PRELIMINARY CENTRAL SEWAGE SYSTEM PLAN FOR:

REGENTS SCHOOL OF CHARLOTTESVILLE

SDP2020-010

TAX MAP 75, PARCEL 66 TAX MAP 76, PARCEL 17

ALBEMARLE COUNTY, VIRGINIA

VICINITY MAP SCALE: 1"=1000"

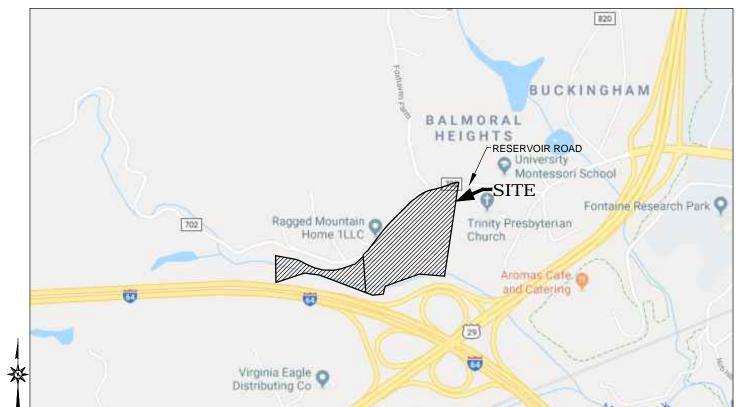
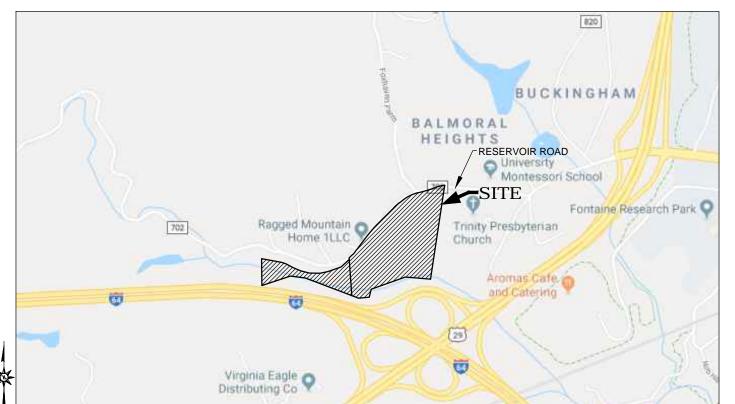



IMAGE PROVIDED BY GOOGLE MAPS

CHARLOTTESVILLE VA, 22902 JUSTIN@SHIMP-ENGINEERING.COM

CENTRAL SEWAGE SYSTEM PLAN REGENTS

SCHOOL

ALBEMARLE COUNTY, VIRGINIA **SUBMISSION:** 2021.07.12 **REVISION:** 2021.08.09

FILE NO.

18.020

COVER

OWNER/DEVELOPER

Regents School of Charlottesville Inc. 3045 Ivy Road Charlottesville, Virginia 22903

PLAN PREPARATION

Shimp Engineering, P.C. 912 East High Street Charlottesville, VA 22902 (434) 227-5140

ZONING

EC - Entrance Corridor R1 - Residential SP201800011 approved on September 18, 2019 permitting a private school use on the site

MAGISTERIAL DISTRICT

Samuel Miller

SOURCE OF TITLE

DB 5237 P 251 DB 660 P 780 (plat)

EXISTING USE

Vacant Land

PROPOSED USE

Private School (Grades K-12) 468 Students

NOTES

Regents School site plan improvements shown for reference only. This plan only proposes the new sanitary sewer system to serve Regents School.

RELIABILITY CLASSIFICATION

SHEET INDEX

C1 COVER

C2 SITE OVERVIEW

C3 SANITARY SEWER FORCE MAIN PLAN

C4 SANITARY SEWER GRAVITY FLOW PLAN

C5 FORCE MAIN PROFILE & SANITARY SEWER PUMP STATION DETAILS

C6 SANITARY SEWER PUMP STATION CALCULATIONS

WETLAND TREELINE **FENCE** UTILITY UTILITY POLE **GUY WIRE** OVERHEAD UTILITY UNDERGROUND UTILITY STORM MANHOLE DROP INLET STORM SEWER **ROOF DRAIN** SANITARY MANHOLE SANITARY SEWER MAIN SANITARY SEWER LATERAL WATER LINE 0 WATER METER WATER METER VAULT FIRE HYDRANT FIRE DEPARTMENT CONNECTION GAS LINE —— GAS —— —— GAS —— **EASEMENTS** CONSTRUCTION GRADING ACCESS

000000000

LEGEND

EXISTING

311.5 x

311.5 TC x

311.5 TW x

311.5 BW x

00000000

NEW

DESCRIPTION

SITE PROPERTY LINE

BUILDING SETBACK PARKING SETBACK

PARKING COUNT

INDEX CONTOUR

SPOT ELEVATION

STREAM BUFFER

RETAINING WALL

EDGE OF PAVEMENT

CG-12 TRUNCATED DOME

HANDICAP ACCESSIBLE AISLE

ROAD CENTERLINE

FRONT OF CURB

BACK OF CURB

SIDEWALK

MATERIAL

CONCRETE RIPRAP ASPHALT

EC-2 MATTING EC-3 MATTING

SIGHT DISTANCE

DRAINAGE

SANITARY WATERLINE

STORMWATER ACCESS

STORMWATER FACILITY MAINTENANCE

BIKE PARKING

HANDICAP PARKING

100 YEAR FLOODPLAIN

INTERVAL CONTOUR

TOP OF CURB ELEVATION

TOP OF WALL ELEVATION

BOTTOM OF WALL ELEVATION

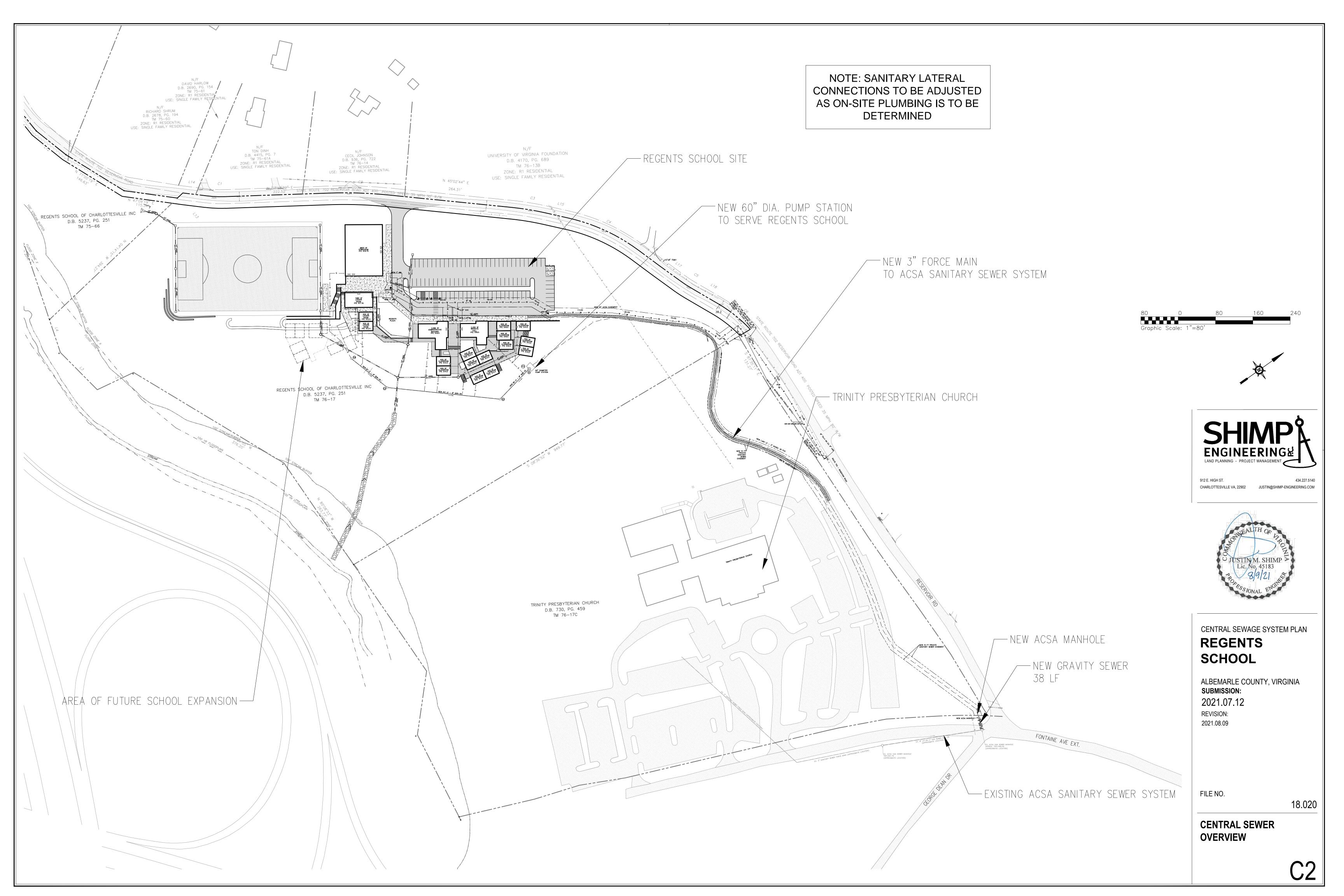
TOPOGRAPHY

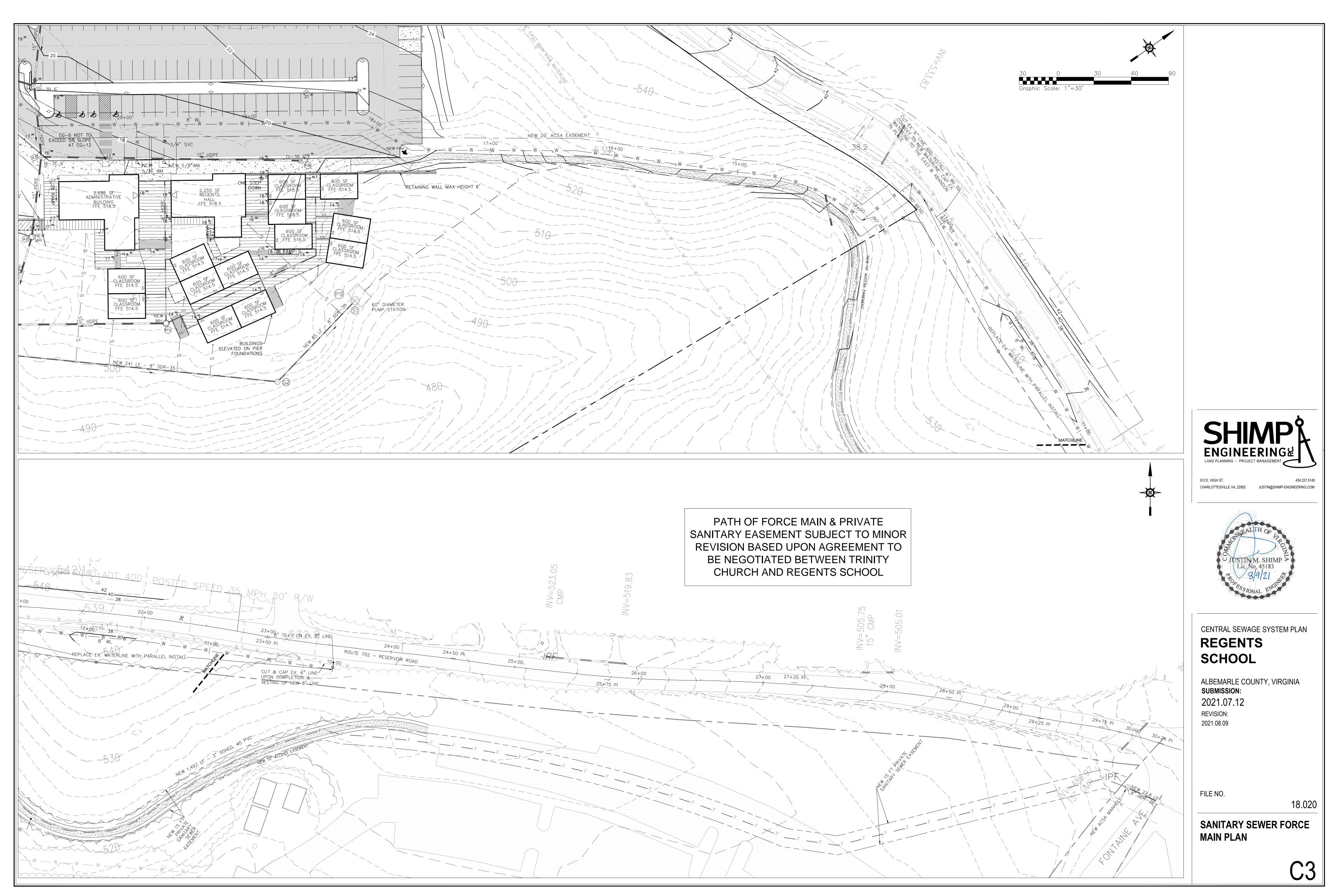
ADJACENT PROPERTY LINE

BOUNDARIES

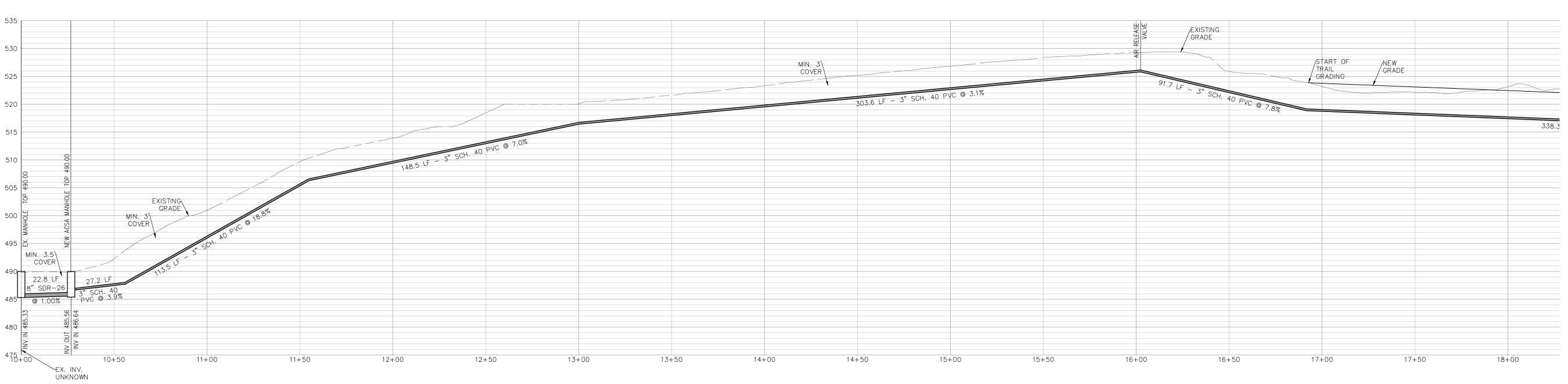
BENCHMARK

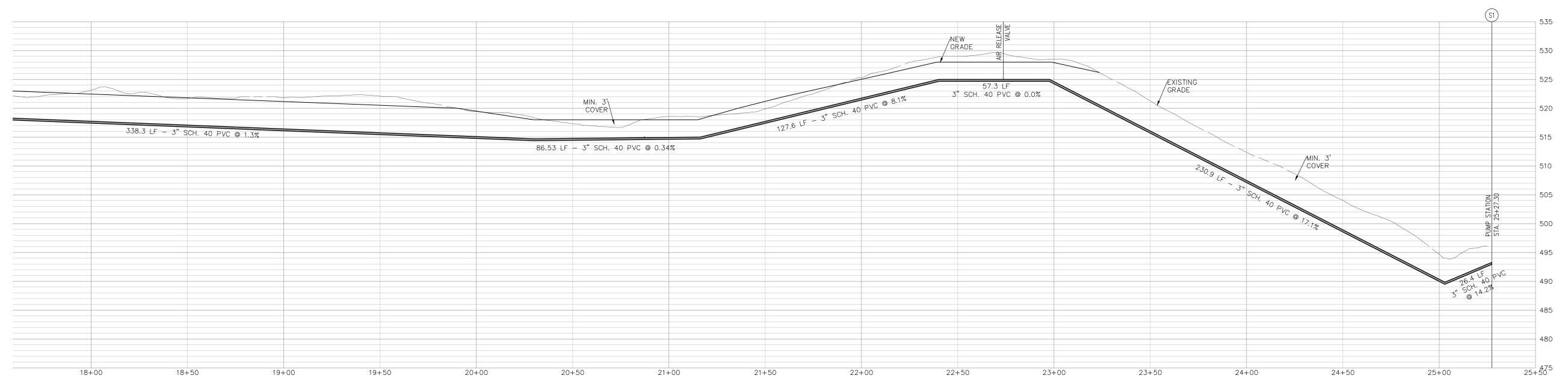
SITE TEXT

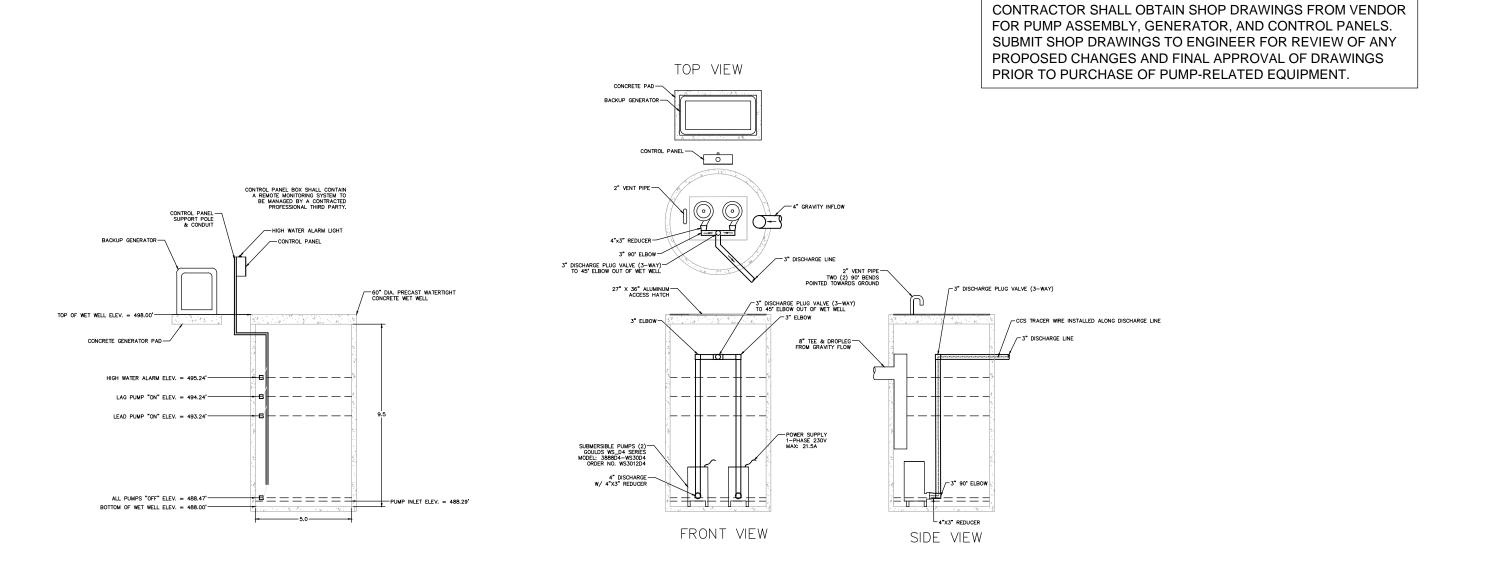

STREAM


BUILDING

BUILDING


STAIRS


1. THE SIZE OF THE SYMBOLS MAY VARY FROM WHAT IS SHOWN.



2 SANITARY SEWER PUMP STATION DETAILS

C5 Scale: 1"=5"

912 E. HIGH ST.

434.227.5140 CHARLOTTESVILLE VA, 22902 JUSTIN@SHIMP-ENGINEERING.COM

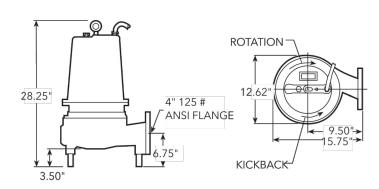
CENTRAL SEWAGE SYSTEM PLAN **REGENTS** SCHOOL

ALBEMARLE COUNTY, VIRGINIA SUBMISSION: 2021.07.12

REVISION: 2021.08.09

FILE NO.

18.020


FORCE MAIN PROFILE & SANITARY SEWER PUMP STATION DETAILS

APPLICATION DATA AND CONSTRUCTION DETAILS

Maximum Solid Size		3"		
Minimum Casing Thickness		⁵ ⁄ ₁₆ "		
Casing Corrosion Allowance		1 /8"		
Maximum Working Pressure		30 PSI		
Maximum Submergence		50 feet		
Minimum Submergence		Fully submerged for continuous operation		
Millimani Submergence		6" below top of motor for intermittent operation		
Maximum Environmental Temperature		40° C (104° F) continuous operation, 60° C (140° F) intermittent operation		
Power Cable - Type		Type SJTOW: single phase, 1½ and 2 HP		
(See Motor Information for AWG data/size.)		Type STOW: single phase, 1½ - 3 HP and 5 HP, 460 V		
(See Motor Information for Avvo data/size.)		Type STOW: single phase, 3 and 5 HP, three phase 5 HP, 230 V and 7½ HP		
Motor Cover, Bearing Housing, Seal Housing, Casing		Gray Cast Iron - ASTM A48, Class 30		
Impeller - Standard, Optional		Gray Cast Iron - ASTM A48 or Cast Bronze - ASTM B584 C87600		
Motor Shaft		AISI 300 Series Stainless Steel		
Motor Design		NEMA 56 Frame, oil filled with Class F Insulation		
Motor Overload Protection		Single phase: on winding thermal overload protection auto reset		
Motor Overload Potection		Three phase: requires Class 10 overloads in control panel		
External Hardware		300 Series Stainless Steel		
Impeller Type		Semi-open with pump out vanes on back shroud		
Oil Capacity - Seal Chamber		1.5 quarts		
Oil Capacity - Motor Chamber		1½-5 HP single and three phase: 7 quarts		
On Capacity - Motor Chamber		7½ HP three phase: 6.5 quarts		
Mechanical Seals - Standard	Upper	Carbon/Ceramic; Type 21		
Mechanical Seals - Standard	Lower	Silicon Carbide/Silicon Carbide; Type 31		
Mechanical Seals - Optional Lower		Silicon Carbide/Tungsten Carbide; Type 31		

DIMENSIONS

(All dimensions are in inches. Do not use for construction purposes.)

• 1.5 - 7.5 HP; 200, 230, 460 and 575 volts

control panel

outside environment.

to carry thrust loads.

AGENCY LISTINGS

Class F insulation

Class 10 overload protection must be provided in

• Fully submerged in oil-filled chamber: High grade

turbine oil surrounds motor for more efficient heat dissipation, permanent lubrication of bearings and

mechanical seal for complete protection against

• Designed for Continuous Operation: Pump ratings

are within the motor manufacturer's recommended

working limits and can be operated continuously

• Bearings: Upper and lower heavy duty ball bearing

construction for precision positioning of parts and

jacket damage and to prevent oil wicking. 20 foot

Tested to UL 778 and CSA 22.2 108 Standards By Canadian Standards Association

without damage when fully submerged.

• Power Cable: Severe duty rated, oil and water

resistant. Epoxy seal on motor end provides

secondary moisture barrier in case of outer

standard with optional lengths available.

• O-ring: Assures positive sealing against

contaminants and oil leakage.

File #LR38549

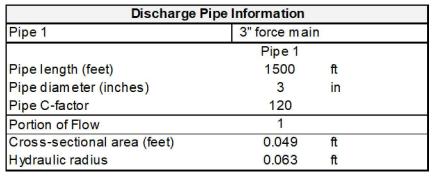
APPLICATIONS

Used in a variety of residential, commercial and

industrial applications such as: • Sewage systems, Flood and Pollution Control, Dewatering/Effluent, Farms, Hospitals, Trailer Courts,

SPECIFICATIONS

- Pump: Maximum solid size: 3"
- Discharge size: 4", 125 # ANSI flange Maximum capacity: 620 GPM
- Maximum total head: 60 feet
- 300 Series stainess steel fasteners
- 20' Power cord • Standard silicon carbide/silicon carbide outer seal
- Maximum ambient temperature: 104° F (40° C)

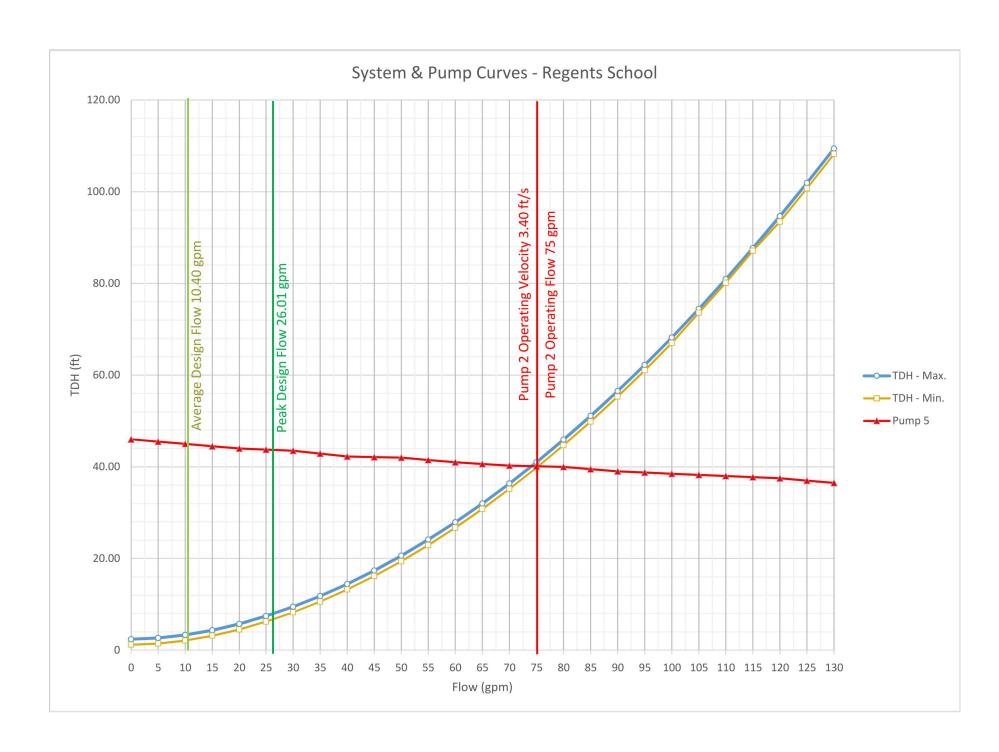

- continuous duty, 140° F (60° C) intermittent duty
- Rated for continuous duty when fully submerged
- Insulation: Class F • 60 Hertz
- Single row ball bearings • 300 Series stainless steel keyed shaft
- Single Phase:
- 1.5 5 HP; 208 and 230 volts
- Built-in thermal overloads with automatic reset

Built-in capacitors

MODEL AND MOTOR INCORMATION

Ouder Ne	ш	Dhasa	Valta	DDM	Impeller	Maximum	L.R.	KVA	Power	F.L. Motor	Res	istance	Wt.
Order No.	HP	Phase	Volts	RPM	Dia. (in.)	Amps	Amps	Code	Cable	Efficiency %	Start	Line-Line	(lbs.)
WS1518D4M		1	208			17.2	50.8	В	14/2	80	1.1	0.9	
WS1512D4M]	1	230]		14.7	29.5	Е	14/3	70	1.4	1.8	
WS1538D4M	1 -		200	1750	F (2	11.5	40.9	Н		81		1.7	105
WS1532D4M	1.5	3	230	1750	5.63	10.0	40.0	F	14/4	83	NA	2.3	195
WS1534D4M]	3	460]		5.0	20.0	F	14/4	83	NA	9.3	
WS1537D4M			575			4.0	14.4	Н		74		14.8	
WS1518D4		1	208			17.2	50.8	В	14/2	80	1.1	0.9	
WS1512D4		ı	230			14.7	29.5	Е	14/3	70	1.4	1.8	
WS1538D4	1.5		200	1750	/ 25	11.5	40.9	Н		81		1.7	195
WS1532D4	1.5	3	230	1/50	6.25	10.0	40.0	F	1 1 / 1	83	N.I.A.	2.3	175
WS1534D4]	3	460]		5.0	20.0	F	14/4	83	NA	9.3	
WS1537D4			575			4.0	14.4	Н		74		14.8	
WS2018D4		1	208			20.3	50.8	В	14/3	80	1.1	0.9	
WS2012D4]	ı	230			17.3	36.9	D		75	1.4	1.5	
WS2038D4	2		200	1750	, ,,	13.3	40.9	Н		81		1.7	200
WS2032D4		3	230	1750	6.63	11.6	40.0	F	1 1 1 1	83	NIA	2.3	200
WS2034D4]	3	460			5.8	20.0	F	14/4	83	NA	9.3	
WS2037D4			575			4.6	14.4	Н		74		14.8	
WS3018D4		1	208			25.5	50.8	В	10/2	80	1.1	0.9	208
WS3012D4	1		230]		21.5	46.4	C	10/3	79	1.0	1.0	208
WS3038D4	ا ر		200	1750	7.00	16.6	53.8	G	10/4	85		1.3	
WS3032D4	3	2	230	1750	7.00	14.4	49.5	Н		83	N.I.A	1.9	005
WS3034D4]	3	460			7.2	24.8	Н	14/4	83	NA	7.5	205
WS3037D4			575			5.8	17.3	G		78		11.6	
WS5012D4		1	230			26.5	57.7	Α	10/3	80	1.0	0.8	213
WS5038D4]		200			19.1	73.9	F	10/4	84		0.9	
WS5032D4	5	2	230	1750	7.25	16.6	63.6	Е	10/4	85	NIA	1.2	210
WS5034D4		3	460]		8.3	31.8	Е	14/4	85	NA	4.8	210
WS5037D4			575			6.6	22.8	Е	14/4	80		7.4	
WS7532D4			230			23.0	105.0	G		83		0.7	
WS7534D4	7.5	3	460	1750	7.69	11.5	52.5	G	10/4	83	NA	2.8	225
WS7537D4	1		575	1		9.2	42.0	E		84		4.4	

Suction water surface elevation (A)	488.00 feet
Suction water surface elevation (B)	489.00 feet
Discharge water surface elevation	490.00 feet
Static head (A)	2.0 feet
Static head (B)	1.0 feet


Daily Average Flowrates				
Type:	Unit:	Number of Units:	gpd/ unit	Total (gpd)
Grade School w/ Showers	per student / staff	468	16	7,488
*day assumed to be 12-hr for pu	rpose of this analysis.		Total	7,488

Type:	Unit:	Number of Units:
Daily Average Flow	gpd (12-hr)	7,488
Daily Average Flow	gpm	10.40
Peaking Factor	n/a	2.5
Peak Daily Flow	gpm	26.01

t Well Sizing		
Type:	Unit:	Number of Units:
Diameter	ft	5
Volume per foot	gallons	100
Wet Working Depth	ft	5.24
Wet Working Volume	gallons	5.95
Total Storage	gallons	1,422
Pumping Rate	gpm	75
Time to Empy	minutes	19

Duplex Pump (2 Pumps)	Parameter	Pressure
	Pipe Length, (ft)	1500
	Pipe Dia., (in)	3
	Hazen-Williams Obeff, C	120
*Piping from pump basin to di	scharge point	

Туре	K-values	# Fittings
Gate Valve	0.19	0
Plug Valve (99%open)	0.86	1
Butterfly Valve	0.4	0
Swing Check Valve	2.5	1
90° Bend	0.25	1
45° Bend	0.2	3
22.5° Bend	0.12	0
11.25° Bend	0.06	0
Tee (through)	0.6	0
Tee (side out)	1.8	0
Cross (through)	0.6	0
Cross (side out)	1.8	0
Reducer/Increaser	0.1	0
Discharge to air	1	1

Pump Selection

Pump 5

Goulds

WS_D4 Series

Model: 3888D4

WS30D4

Oder No. WS3012D4

3" (Solids)

4" Discharge Flange

1-Phase 230V

1750 RPM

Max Amps: 21.5

Flow

(gpm)

15

20

25

30

35

40

45

50

55

60

65

70

75

80

90

95

100

105

110

115

120

125

Pump 5 TDH

TDH (ft)

46.00

45.50

45.00

44.50

44.00

43.75

43.50

42.88

42.25

42.13

42.00

41.50

41.00

40.63

40.25

40.13 40.00

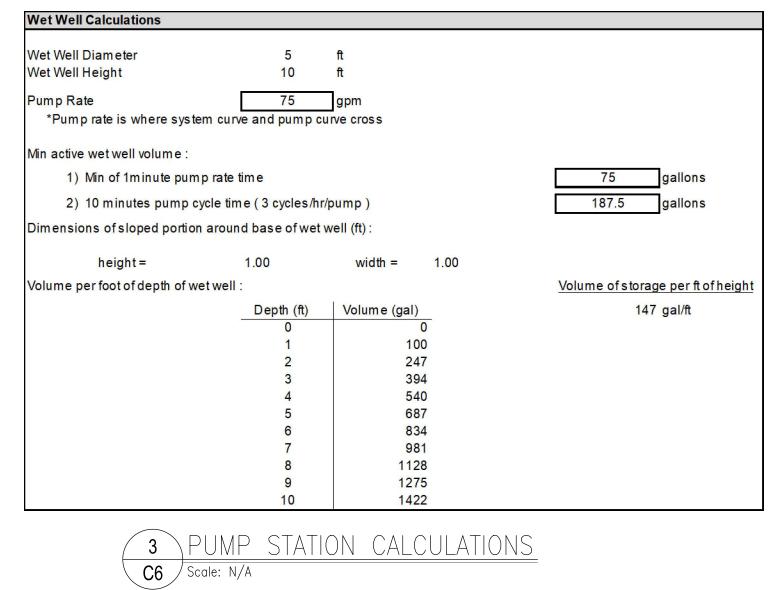
39.50

39.00

38.75

38.50

38.25


38.00

37.75

37.50

37.00 36.50

			System Cu	rve - Head Loss Calc	ulations				
Flo	wrate	Water Velocity In:	Dynamic	Losses, ft	Total Dyna	amic Head	Total Dynamic Head (+20%)		
gpm	cfs	Velocity ft/s	Minor Losses	Pipe Friction	Max. Lift (ft)	Min. Lift (ft)	Max. Lift (ft)	Min. Lift (ft)	
0	0	0	0	0	2.00	1.00	2.40	1.20	
5	0.01	0.23	0.00	0.21	2.21	1.21	2.66	1.46	
10	0.02	0.45	0.01	0.75	2.77	1.77	3.32	2.12	
15	0.03	0.68	0.03	1.60	3.63	2.63	4.35	3.15	
20	0.04	0.91	0.06	2.72	4.78	3.78	5.73	4.53	
25	0.06	1.13	0.09	4.11	6.20	5.20	7.44	6.24	
30	0.07	1.36	0.13	5.75	7.89	6.89	9.46	8.26	
35	0.08	1.59	0.18	7.65	9.83	8.83	11.80	10.60	
40	0.09	1.82	0.24	9.80	12.03	11.03	14.44	13.24	
45	0.10	2.04	0.30	12.18	14.48	13.48	17.37	16.17	
50	0.11	2.27	0.37	14.80	17.17	16.17	20.60	19.40	
55	0.12	2.50	0.45	17.66	20.10	19.10	24.12	22.92	
60	0.13	2.72	0.53	20.74	23.27	22.27	27.92	26.72	
65	0.14	2.95	0.62	24.05	26.67	25.67	32.01	30.81	
70	0.16	3.18	0.72	27.58	30.31	29.31	36.37	35.17	
75	0.17	3.40	0.83	31.34	34.17	33.17	41.00	39.80	
80	0.18	3.63	0.94	35.31	38.26	37.26	45.91	44.71	
85	0.19	3.86	1.07	39.50	42.57	41.57	51.08	49.88	
90	0.20	4.08	1.19	43.91	47.10	46.10	56.53	55.33	
95	0.21	4.31	1.33	48.53	51.86	50.86	62.23	61.03	
100	0.22	4.54	1.47	53.36	56.83	55.83	68.20	67.00	

		Wet Well	
Inflow rate into Wet Well Discharge Flow Out of Wet Well	Qin= Qout=	26.01 gpm 75.00 gpm	0.058 cfs 0.167 cfs
Minimum cycle time between starts	Tmin=	5 min	
Min Storage Volume of Well	Vmin=	93.75 gal	
Height to start pump		5.24 ft	
Volume storage at pump start		723 gal	
Time to Start Pump from empty		25.39 min	0.42 hr
Time to Empty From Start		9.65 min	0.16 hr
Minimum cycle time between starts		5.00 min	0.08 hr
Total Cycle Time		14.65 min	0.24 hr
Cycles per Day (12 Hours)		23.70 cycles/12hr	
Cycles per hour		1.97 cycl/hr	
Max Cycles per hour		4.10 cycl/hr	

Minimum Submer	gence Hx		
Fd=	0.020		
Hx=	0.175	ft	
Hmin=	4.775	ft	

Pump settings :			
1) Bottom of wet well	488.00 ft		
2) Pump Inlet	488.29 ft		
2) All pumps off	488.47 ft		
3) Lead pump on	493.24 ft	(Condition A)	
4) Lag pump on	494.24 ft	(Condition B)	
5) High Water Alarm	495.24 ft		
6) Top of wet well	498.00 ft		

SHIVIP ENGINEERING & LAND PLANNING - PROJECT MANAGEMENT

912 E. HIGH ST. 434.227.5140 CHARLOTTESVILLE VA, 22902 JUSTIN@SHIMP-ENGINEERING.COM

CENTRAL SEWAGE SYSTEM PLAN **REGENTS SCHOOL**

ALBEMARLE COUNTY, VIRGINIA **SUBMISSION:** 2021.07.12 **REVISION:** 2021.08.09

FILE NO.

18.020

SANITARY SEWER PUMP STATION CALCULATIONS