Earlysville Road with Reas Ford Rd/Earlysville Forest Dr Intersection Traffic Study Earlysville, Albemarle County

AMT Project File 17-0013.011 | March 1, 2022
PREPARED FOR:
Albemarle County
Facilities Planning \& Construction
401 McIntire Road, Suite 400
Charlottesville, VA 22902

A. MORTON THOMAS AND ASSOCIATES, INC.

PREPARED BY:

Timothy Kirk, PE, PTOE, RSP1
A. Morton Thomas and Associates, Inc.

100 Gateway Centre Parkway, Suite 200
Richmond, VA 23235
(804)276-6231

Signature: Pimitly łive

TABLE OF CONTENTS

Executive Summary 3
Introduction 9
Previous Studies 11
Roadway Conditions 12
Traffic Volume 14
Crash Data 16
Alternatives Discussion 19
No Build Alternative 19
Alternative 1 (Turn Lanes Only) 20
Alternative 2 (Traffic Signal Plus Turn Lanes) 20
Alternative 3 (Single Lane Roundabout) 21
Alternative 3B (Mini Roundabout) 21
Alternative 4 (Interim AWSC) 22
Signal Warrant Analysis 27
Auxiliary Lane Analysis 32
Capacity Analysis 33
No Build Conditions (Existing Configuration) 34
Alternative 1 - TWSC with Turn Lanes 34
Alternative 2 - Traffic Signal Plus Turn Lanes 34
Alternative 3 - Roundabout Conditions 34
Alternative 4 - Short-Term AWSC 35
Queuing Analysis 38
No Build Conditions (Existing Configuration) 38
Alternative 1 - TWSC with Turn Lanes 38
Alternative 2 - Traffic Signal Plus Turn Lanes. 38
Alternative 3 - Roundabout 38
Alternative 4 - Short-Term AWSC 38
Safety Analysis 42
Conclusions 44

List of Figures

Figure 1: Site Location Map 10
Figure 2: Existing Lane Configuration 13
Figure 3: Existing Traffic Volume 15
Figure 4: Collision Diagram 18
Figure 5: Alternative 1 (Turn Lanes Only) Exhibit 23
Figure 6: Alternative 2 (Traffic Signal Plus Turn Lanes) Exhibit 24
Figure 7: Alternative 3 (Traditional Roundabout) Exhibit 25
Figure 8: Alternative 3B (Mini Roundabout) Exhibit 26
Figure 9: Warrant 2 - Four-Hour Vehicular Volume 29
Figure 10: Warrant 3 - Peak Hour Vehicular Volume 29
Figure 11: Alternative Comparison Level of Service 37
Figure 12: Alternatives Comparison Queuing Analysis 41

List of Tables

Table 1: Roadway Facility Summary 12
Table 2: Crash Type Summary 16
Table 3: Injuries by Severity 17
Table 4: Intersection Crash Rate Summary 17
Table 5: No Build Pros \& Cons 19
Table 6: Alternative 1 Pros \& Cons 20
Table 7: Alternative 2 Pros \& Cons 20
Table 8: Alternative 3 Pros \& Cons 21
Table 9: Alternative 3B Pros \& Cons 22
Table 10: Alternative 4 Pros \& Cons 22
Table 11: MUTCD Table 4C-1, Warrant 1 Eight-Hour Vehicular Volume 28
Table 12: Auxiliary Lane Analysis Summary 32
Table 13: Level of Service Criteria 33
Table 14: Level of Service Analysis Summary 36
Table 15: Queueing Analysis Summary 40
Table 16: Utilized CMF Summary 42
Table 17: Annualized CMF Application 42
Table 18: Forecast Monetized Safety Performance by Alternative 43
Table 19: Benefit/Cost Comparison 43

Appendices

Study Area Photos .Appendix A
Traffic Data Appendix B
Crash Data Appendix C
Signal Warrant Analysis Appendix D
Alternative Cost Analysis. Appendix E
Traffic Analysis Appendix F
Auxiliary Lane Analysis. Appendix G
CMF Data. Appendix H
Previous Studies .Appendix I

EXECUTIVE SUMMARY

This report summarizes evaluation of potential intersection improvement alternatives at the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive in Earlysville, Albemarle County. This study includes review of previous investigations, assessment of physical conditions, traffic volume collection, evaluation of crash data, discussion of alternatives, alternatives evaluation, signal warrant analysis, capacity analysis, queuing analysis, safety analysis, and investigative conclusions.

Albemarle County and The Virginia Department of Transportation (VDOT) previously identified safety concerns at the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive. As a result of a pattern of right angle crashes at the intersection, two traffic studies have been prepared evaluating the intersection.

Previous Studies

An internal intersection traffic study was completed by VDOT Culpepper District in 2018. This study was prompted from a request from a state legislator based upon citizen concerns regarding intersection safety. This study included evaluation of crash data, sight distance, signal warrant analysis, auxiliary lane analysis, and signing and marking considerations. Recommendations from this report are separated by Short Term, Intermediate, and Long Term timeframes. Short term improvements consisted of low cost traffic control device installation, intermediate recommendations included a right turn lane on Reas Ford Road eastbound and driveway channelization, and the long term recommendation was to evaluate and construct a roundabout.

A subsequent intersection traffic study was completed by a consultant employed by VDOT in 2019. This study was again prompted by concerns from elected officials and local residents. This study included evaluation of existing conditions, traffic volume collection, crash analysis, intersection capacity analysis, alternative development, evaluation of alternatives, signal warrant analysis, conceptual cost estimates, alternative comparison, and recommendations. The recommendations of this report were separated as short term low cost improvements (traffic control device installation) and a long term recommendation to convert the intersection to a mini roundabout.

Physical Conditions

The intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive is a four legged crossroad intersection that is two way stop controlled with free flow on Earlysville Road. The Earlysville Business Park is located just over one mile west of the intersection along the south side of Reas Ford Road. This facility is a multi-tenant industrial park that generates truck traffic that utilizes the study intersection. The Charlottesville-Albemarle Airport is located two miles south of the intersection along the north side of Earlysville Road. The majority of airport traffic enters from US 29 and the roadway network south of the intersection.

Traffic Volume

A 12-hour turning movement count was collected at the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive on Thursday September 23, 2021 between the hours of 7 AM to 7 PM. The overall peak hour was found to occur between the hours of 4 PM to 5 PM when 996 vehicles entered the intersection. This includes 543 vehicles on the Earlysville Road northbound approach, 307 vehicles on the Earlysville southbound approach, 95 vehicles on the Reas Ford Road eastbound approach, and 51
vehicles on the Earlysville Forest Drive westbound approach. Pedestrian volumes are low throughout all hours of the collected data, with less than five pedestrians in total traversing the intersection in all hours. Overall, trucks and heavy vehicles constitute 1.2% of all vehicles entering the intersection. Ten large trucks entered the intersection in the AM peak hour and 12 entered during the PM peak hour. The heaviest truck movement is the Reas Ford Road eastbound right turn movement, which is approximately 7% of all traffic on that approach.

Crash Data

Crash data was obtained from VDOT sources for the most recent five year period available from July 1, 2016 to June 30, 2021. Crash data was utilized to quantify the recent safety performance of the intersection and to compare the potential benefit of potential alternatives understanding constrained funding for potential safety improvement projects. Over the five year period, 15 crashes were reported within the intersection and its influence area. Right angle crashes account for 53% of intersection crashes and is the most common crash type reported to occur. Angle crashes are the type of crash potentially prevented by the installation of a traffic signal or roundabout. Six of the intersection angle crashes involved a motorist from Reas Ford colliding with a northbound motorist on Earlysville Road. Right angle crashes are concerning since this is the type of intersection crash that tends to result in injuries. The right angle crashes at this intersection accounted for 12 of the 16 documented injuries. The data shows that the majority of the angle crashes occurred from 2016 to 2018, with only one angle crash each reported in 2019 and 2020, with zero in the first half of 2020.

Alternative Evaluation

Preliminary intersection alternatives have been developed as the basis for evaluation within this study founded upon the results of previous studies and screening for appropriate countermeasures for similar locations. Preliminary design and cost estimation was performed for each alternative utilizing aerial survey data obtained from VDOT. Potential alternatives include No Build, widening Earlysville Road to construct left turn lanes in both directions and widening Reas Ford Road to construct an eastbound right turn lane (Alternative 1), installing a traffic signal along with the Alternative 1 improvements (Alternative 2), and converting the intersection to a single lane roundabout (Alternative 3). An additional short-term alternative is also briefly discussed, which is simple installation of All Way Stop Control (AWSC) as an interim measure (Alternative 4). One of the previous studies indicated that a mini roundabout should be considered for the intersection. Mini roundabouts are typically constructed in low speed residential areas and the study intersection is not appropriate for this type of design, especially considering the regular occurrence of large trucks arriving and departing the Earlysville Industrial Park via Reas Ford Road and prevailing speed of each roadway.

The No Build Alternative is detailed by existing traffic analysis and recent crash data. The No Build alternative is viable if existing intersection operation is acceptable in terms of level of service and crash history, or if the cost of improvement is excessive compared to the anticipated benefit. No major intersection modification or widening occurs in the No Build Alternative.

Alternative 1 includes construction of exclusive left turn lanes on both Earlysville Road approaches and construction of an exclusive right turn lane on the Reas Ford Road eastbound approach without any modification to intersection control (i.e. no need for signalization or a roundabout). Alternative $\mathbf{2}$ includes the installation of a traffic signal along with construction of exclusive left turn lanes on both Earlysville Road approaches and construction of an exclusive right turn lane on the Reas Ford Road eastbound
approach without any modification to intersection control. Alternative $\mathbf{3}$ includes construction of a single lane roundabout with an inscribed circle diameter of 170 feet. Due to the truck percentage and location of the Earlysville Business Park, the roundabout is a traditional design to accommodate a WB-62 design vehicle (tractor trailer).

Alternative 3B includes construction of a mini roundabout. This alternative was included based upon feedback from review of the preliminary report. This alternative is a modified version of Alternative 3 utilizing significantly smaller dimensions. The mini roundabout uses a total inscribed circle diameter of 80 feet to minimize right of way impact and cost. Alternative $\mathbf{3 B}$ is assumed to provide similar operational and safety impact compared to a traditional roundabout. Therefore; LOS, queuing, and safety analysis is assumed to be identical for the purpose of this study. The key difference with a mini roundabout is that the dimension do not accommodate large vehicles to traverse the circle the same as passenger cars. With a mini roundabout, large vehicles and trucks are able to travel through and over the center island, which can be mountable curb, painted, or a modular device. With the skewed angle of the Reas Ford approach to Earlysville Road, the mini roundabout would still necessitate modification of this approach to align near 90 degrees opposite Earlysville Forest Road.

Previous studies suggested construction of a mini roundabout at the intersection, which are typically utilized for intersections where all approaching roadways have prevailing speed of less than 30 mph and truck traffic is low. With the volume of truck traffic generated by the Earlysville Business Park west of the intersection on Reas Ford Road and the prevailing speed of traffic, a mini roundabout is likely not appropriate for this location.

Alternative 4 is simply the installation of All Way Stop Control (AWSC) as a short-term (interim only) potential option to address the occurrence of angle crashes at the intersection. This alternative includes installation of stop signs at the intersection with advance warning signs on Earlysville Road. The engineering construction estimate for the Alternative 4 improvements is of negligible cost. Costs to implement AWSC would be minimal if implemented by VDOT forces.

A summary table listing the potential alternatives and estimated construction cost is shown below:

Alternative Number	Description	Construction Estimate
No Build	No Build	$\$ 0$
Alt 1	Turn Lanes Only	$\$ 1,903,495$
Alt 2	Traffic Signal and Turn Lanes	$\$ 2,330,995$
Alt 3	Traditional Roundabout	$\$ 4,267,066$
Alt 3B	Mini Roundabout	$\$ 2,430,144$
Alt 4	All Way Stop	Less than $\$ 5,000$

Traffic Signal Warrant Analysis

The Manual on Uniform Traffic Control Devices (MUTCD) contains nine warrants for investigating the need for a traffic signal at a particular intersection. The satisfaction of a signal warrant or warrants may indicate
the need for the installation of a traffic signal. Three of the warrants deal directly with traffic volumes; two warrants focus on pedestrian issues; one focuses on safety; one on grade crossings; one on traffic signal progression; and one on a Planning level (non-data-based) analysis. None of the nine MUTCD warrants are satisfied for the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive. The heaviest side street movement at the intersection is the right turn movement from Reas Ford Road, and right turning traffic is generally only impeded by the queue of left turning traffic. Based upon review of the actual intersection conditions, the MUTCD traffic signal warranting criteria is not satisfied for the study intersection.

Turn Lane Analysis

Auxiliary turn lane analysis was performed for the intersection using the VDOT Access Management Design Standards for Entrances and Intersections, Revised January of 2021. These standards are based upon the AASHTO publication A Policy on Geometric Design of Highways and Streets. Based upon evaluation of actual intersection conditions, the Earlysville Road northbound approach meets the criteria for a left turn lane during the PM peak hour. In addition, the Reas Ford Road eastbound approach meets the criteria for a right turn lane during the AM peak hour.

Capacity Analysis

The procedures outlined in the Highway Capacity Manual; $6^{\text {th }}$ Edition were used as guidelines for the analysis of the intersection alternatives. This manual provides procedures for the analysis of both signalized and unsignalized intersections. Level of Service (LOS) categories range from LOS "A" (best) to " F " (worst). LOS analysis was completed through the use of Synchro, version 10.3 and Sidra, version 9.0. These software packages categorize the LOS based on HCM methodology and criteria.

Evaluation of the collected data shows that the intersection currently (No Build Alternative) operates at an acceptable LOS, with LOS A on Earlysville Road with modest delay on the side streets. Reas Ford Road operates at LOS C and Earlysville Forest Drive operates at LOS D. Construction of auxiliary lanes including left turn lanes on Earlysville Road in both directions and a right turn lane on the Reas Ford Road eastbound approach (Alternative 1) provides minimal improvement only with LOS remaining unchanged. Installation of a traffic signal with auxiliary lanes (Alternative 2) improves all movements to LOS B or better. Installation of a roundabout (Alternative 3) improves all movements to LOS A or better. For the purpose of analysis, a traditional roundabout and a mini roundabout are assumed to provide the same LOS. The installation of All Way Stop Control (Alternative 4) as an interim measure improves LOS on the side roads to LOS B or better but deteriorates the Earlysville Road southbound approach to LOS D in the AM peak hour the northbound approach to LOS D in the PM peak hour. Alternative 4 is a considered a short term safety measure only.

Queuing Analysis

Queuing refers to the back up of vehicles on a particular approach to an intersection. Analysis was performed at the study intersection during the weekday AM and PM peak hours using the SimTraffic micro-simulation model, which is a simulation complement to the Synchro traffic analysis models utilized for the capacity analysis.

Queuing analysis indicates that no existing (No Build Alternative) turning movements currently exceed the available storage length or impede other traffic movements during the peak periods analyzed. Queuing analysis indicates that all conditions described in the Existing Conditions are expected to continue
with similar queuing following construction of exclusive left turn lanes on Earlysville Road and a right turn lane on the Reas Ford (Alternative 1) northbound approach. Queue lengths are minimally reduced in comparison to Existing Conditions. With the installation of a traffic signal (Alternative 2), short queues are created on the Earlysville northbound and southbound approaches. The queues are not substantial and are not anticipated to inhibit access to proposed exclusive left turn lanes. Queuing on the side road approaches is similar to existing conditions. Queuing analysis indicates that queuing is anticipated to be minimal with the construction of a roundabout (Alternative 3). For the purpose of analysis, a traditional roundabout and a mini roundabout are assumed to provide the same queuing results. Queuing analysis indicates that queuing is anticipated to be a more significant issue with All Way Stop Control (Alternative 4). The most significant queue is the Earlysville Road southbound approach during AM peak hour and Earlysville northbound approach during PM peak hour.

Safety Analysis

For purposes of comparing benefit vs cost for potential intersection improvement alternatives, evaluation of economic cost of safety performance resulting from motor vehicle crashes at the intersection was performed utilizing accepted Federal Highway Administration (FHWA) safety analysis procedures.

Applying approved Crash Modification Factors (CMF's), Alternative 3 (Roundabout) would be anticipated to result in the largest reduction in overall crashes at the intersection. Alternative 3, however, also is the most expensive and the most impactful to adjacent property owners and the community. Alternative 3B was is a mini roundabout option intended to be less costly. For the purpose of this study, crash reduction is assumed to be the same for the traditional roundabout and mini roundabout. Further evaluation of anticipated monetized annual safety performance over a 20 year service life was compared to the estimated cost of construction for each alternative. The 20 year performance assumes annual inflation of 4% for cost of each crash type. By comparison of the forecast crash reduction with estimated cost, Alternative 3B (mini roundabout) was found to achieve the highest benefit/cost ratio of all alternatives evaluated.

Conclusions:

This report summarizes evaluation of potential intersection improvement alternatives at the intersection of Earlysville Road (Route 743) with Reas Ford Road (Route 660) and Earlysville Forest Drive (Route 660) in Earlysville, Albemarle County. Albemarle County and The Virginia Department of Transportation (VDOT) previously identified safety concerns at the intersection evidenced by crash data, and subsequently previously evaluated various options for modification of the intersection.

Based upon evaluation of the collected data and Alternatives evaluation, the following recommendations are made in regard to the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive:

- Based upon assessment of the entirety of the collected data, major intersection reconfiguration is not necessary at this time, and the No Build Alternative is appropriate. The intersection currently operates at adequate Level of Service (LOS) and the occurrence of crashes at the intersection has declined in the most recent 30 month period of the study.
- Due to the identified pattern of right angle crashes from 2016 to 2018, the intersection should continue to be monitored closely to determine if the recent reduction of intersection crashes following implementation of low cost safety improvements endures.
- If right angle crashes persist or increase where five or more occur in a 12 month period, a traffic signal can be installed in accordance with MUTCD Warrant Seven (Crash Safety). If safety performance or future traffic volume indicate that intersection control needs to be enhanced, a traffic signal or a roundabout both would provide adequate Level of Service.
- A mini roundabout appears to be inappropriate at this intersection due to volume, truck traffic, and prevailing speed. If a roundabout is considered in the future, a traditional roundabout is more appropriate for the conditions at this location.
- Ideally, construct auxiliary lanes including left turn lanes in both directions of Earlysville Road and a right turn lane on Reas Ford Road. VDOT warranting criteria based upon AASHTO is satisfied for these approaches. These auxiliary lanes, however, do not address the right angle crash pattern at the intersection or appreciably improve Level of Service.

INTRODUCTION

This report summarizes evaluation of potential intersection improvement alternatives at the intersection of Earlysville Road (Route 743) with Reas Ford Road (Route 660) and Earlysville Forest Drive (Route 660) in Earlysville, Albemarle County. Albemarle County and The Virginia Department of Transportation (VDOT) previously identified safety concerns at the intersection of Earlysville Road and Reas Ford Road evidenced by crash data, and subsequently evaluated various options for modification of the intersection. This study includes review of previous investigations, assessment of physical conditions, traffic volume collection, evaluation of crash data, discussion of alternatives, alternatives evaluation, signal warrant analysis, capacity analysis, queuing analysis, safety analysis, and investigative conclusions.

The specific purpose of this study is to review and expand the effort from previous studies, determine if the roundabout alternative is appropriate, consider alternatives to a roundabout, evaluate the intersection operation to define any deficiency, provide cost and benefit analysis for improvements, evaluate and compare operation of alternatives, determine appropriate size of a potential roundabout, prepare cost estimates for recommended improvements, and identify the pros and cons associated with the proposed recommendation including impact of construction on neighboring businesses and the community of Earlysville.

Traffic analyses will consider No Build Conditions utilizing 2021 date along with evaluation of four separate alternatives. Forecast or Design Year analysis was not part of the scope of work for this investigation. Alternatives evaluated include widening to construct left turn lanes on Earlysville Road and right turn lane on Reas Ford Road without installation of a traffic signal (Alternative 1), Installation of a Traffic Signal with left turn lanes on Earlysville Road and a right turn lane on Reas Ford Road (Alternative 2), conversion to a roundabout (Alternative 3 and Alternative 3B), and installation of All-way Stop Control (Alternative 4). The No Build Alternative is evaluated for comparison as shown in the existing configuration. Crash data is reviewed in detail to document the extent of the existing safety issue and as related to performance of potential mitigation strategies.

The study area and project location is shown on Figure 1.

Earlysville and Reas Ford Road
Site Location Map

FIGURE 1

PREVIOUS STUDIES

Albemarle County and The Virginia Department of Transportation (VDOT) previously identified safety concerns at the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive. The primary issues that resulted in the previous intersection studies were right angle crashes that occurred at the intersection. The principal conclusion of previous intersection studies was that the intersection should be reconfigured as a roundabout. Copies of previous traffic study documents are included in Appendix I.

An internal intersection traffic study was completed by VDOT Culpepper District in 2018. This study was prompted from a request from a state legislator based upon citizen concerns regarding intersection safety. This study included evaluation of crash data, sight distance, signal warrant analysis, auxiliary lane analysis, and signing and marking considerations. Recommendations from this report are separated by Short Term, Intermediate, and Long Term timeframes and are shown below:

- Short Term Recommendations:
- Refresh Stop Ahead pavement markings on Reas Ford Road
- Refresh Stop Bar on the Reas Ford Road approach
- Refresh and relocate Stop Bart forward on the Earlysville Forest Drive approach
- Intermediate Recommendations:
- Introduce driveway channelization for uncontrolled approaches in the northwest quadrant
- Construct an exclusive right-turn lane on the Reas Ford Road approach
- Long Term Recommendations:
- Evaluate and install a roundabout as the preferred intersection alternative

A subsequent intersection traffic study was completed by a consultant employed by VDOT in 2019. This study was again prompted by concerns from elected officials and local residents. This study included evaluation of existing conditions, traffic volume collection, crash analysis, intersection capacity analysis, alternative development, evaluation of alternatives, signal warrant analysis, conceptual cost estimates, alternative comparison, and recommendations. The recommendations of this report were separated as short term low cost improvements and a long term recommendation to convert the intersection to a mini roundabout. Recommendations are detailed below:

- Short Term (Low Cost) Recommendations:
- Dual installation of oversized W2-1 (Crossroad Warning) signs with street name plaques
- Enhanced pavement markings to delineate through lanes through the intersection
- Dual installation of W3-1 (Stop Ahead) signs on side streets
- Dual installation of R1-1 (STOP) signs on side streets
- Install retroreflective sign post inserts
- Removal of vegetation or obstructions to improve sight distance
- Long Term Recommendation:
- Construct a mini roundabout

Additional traffic control devices have been installed at the intersection following the most recent traffic study. The additional traffic control devices include:

- Radar feedback sign on Earlysville Road NB - Installed May 2020
- Flashing LED STOP sign on Reas Ford Road - installed June 2020

ROADWAY CONDITIONS

Below is a detailed description of the existing study area roadway network. AADT (Annual Average Daily Traffic) volume information was estimated based on the collected turning movement counts (TMC) using a K factor of 10%.

Earlysville Road (Route 743) is a two lane Urban Collector roadway with an exclusive right turn lane in the northbound direction. The roadway is undivided with shoulders of varying width from 0-10 feet wide. Earlysville Road is oriented north-south operating as free-flow traveling unimpeded through the intersection. The speed limit on Earlysville Road is 35 mph (miles per hour) and the AADT is $8,500 \mathrm{vpd}$ (vehicles per day).

Reas Ford Road (Route 660) is a two lane Rural Major Collector roadway. Reas Ford Road is oriented eastwest operating under stop control. The roadway is undivided without paved shoulders and has an open ditch on the east side of the road. The speed limit on Reas Ford Road is 35 mph and the AADT is 5,700 vpd.

Earlysville Forest Drive (Route 660) is a two lane undivided Urban Local Collector without paved shoulders. Earlysville Forest Drive is oriented east-west opposite Reas Ford Road operating under stop control. The speed limit on Earlysville Forest Drive is 35 mph and the AADT is $1,110 \mathrm{vpd}$.

The Rivanna Community Church is located in the northeast quadrant of the intersection. A new sanctuary was recently completed that relocated the building closer to the roadway. The parking area with access to Earlysville Forest Drive has also been expanded. The Earlysville Exchange Thrift Store is located in the northwest quadrant of the intersection with an uncontrolled driveway frontage along the west side of Earlysville Road. VIP Customs is located north of and adjacent to the Earlysville Exchange and utilizes the same uncontrolled connected roadway frontage. The Earlysville Auto Center is located 0.07 mile north of the intersection along the east side of Earlysville Road. The Earlysville Post Office is located in the southeast quadrant of the intersection with access to Earlysville Forest Drive via Bent Oaks Drive.

The Earlysville Business Park is located just over one mile west of the intersection along the south side of Reas Ford Road. This facility is a multi-tenant industrial park that generates truck traffic that utilizes the study intersection. The Charlottesville-Albemarle Airport is located two miles south of the intersection along the north side of Earlysville Road. The majority of airport traffic enters from US 29 and the roadway network south of the intersection.

Table 1 below provides a detailed description of the existing study area roadway network. The 2021 existing intersection lane configuration and intersection control are shown on Figure 2.

Table 1: Roadway Facility Summary

Name	Code	State Functional Classification	Area	Direction	Speed Limit	AADT	Year	Description
Earlysville Road	743	Urban Collector	Earlysville	N-S	35	8,500	2021	N-S Urban Collector that connects with Route 606 to the southeast and Route 629 to the northwest
Reas Ford Road	660	Rural Major Collector	Earlysville	E-W	35	5,700	2021	E-W Rural Major Collector that connects to Route 676 to the south and Route 743 to the north
Earlysville Forest Drive	660	Urban Local Collector	Earlysville	E-W	35	1,110	2021	E-W Urban Local Collector that intersects with Route 743 to the
north and south								

LEGEND		
ST0P Existing Traffic Control		Earlysville and Reas Ford Road
- Existing Roadway \rightarrow Existing Lane Configuration		2021 Existing Lane Configuration
XXX Storage Bay Length	NOT	DATE: March 2022
	$\begin{gathered} \text { TO } \\ \text { SCALE } \end{gathered}$	FIGURE 2

TRAFFIC VOLUME

A 12-hour turning movement count was collected at the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive on Thursday September 23, 2021 between the hours of 7 AM to 7 PM. On this date, Albemarle County Schools were fully operational with in classroom instruction for all students.

The overall peak hour was found to occur between the hours of 4 PM to 5 PM when 996 vehicles entered the intersection. This includes 543 vehicles on the Earlysville Road northbound approach, 307 vehicles on the Earlysville southbound approach, 95 vehicles on the Reas Ford Road eastbound approach, and 51 vehicles on the Earlysville Forest Drive westbound approach.

Overall, trucks and heavy vehicles constitute 1.2% of all vehicles entering the intersection. Ten large trucks entered the intersection in the AM peak hour and 12 entered during the PM peak hour. The most significant truck movements occur on the Reas Ford Road approach right turn movement (7\% in the PM peak hour), the Earlysville Road northbound left turn movement (5% in the PM peak hour), and the Earlysville Road southbound right turn movement (6% in the PM peak hour).

Pedestrian and bicycle data was collected as part of the turning movement counts. Pedestrian volumes are low throughout all hours of the collected data, with less than five pedestrians traversing the intersection in all hours.

The turning movement count (including truck and pedestrian data) is located in Appendix B and the 2021 Existing Traffic Volumes for the weekday AM and PM peak hour volumes are shown in Figure 3.

CRASH DATA

Crash data was obtained from VDOT sources for the most recent five year period available from July 1, 2016 to June 30, 2021. Crash data was utilized to quantify the recent safety performance of the intersection and to compare the potential benefit of potential alternatives understanding constrained funding for potential safety improvement projects.

Over the five year period, 15 crashes were reported within the intersection and its influence area. The influence area of the intersection was assumed to be within 300 feet on all approaches. Of the 15 crashes, one occurred during hours of darkness and two occurred on wet and/or snow covered pavement. The 15 total reported crashes include eight angle crashes, two rear end crashes, two sideswipe (opposite direction) crashes, one head-on crash, one roadway departure (right) crash, and one crash involving a bicycle rider being struck by a vehicle. Right angle crashes account for 53% of intersection crashes and is the most common crash type reported to occur. Angle crashes are the type of crash potentially prevented by the installation of a traffic signal or roundabout. Table $\mathbf{2}$ below provides a summary of the crash type along with the percentage of total crashes at the intersection during the five-year period.

Table 2: Crash Type Summary

Crash Type	Number of Crashes	Percent of Total
Angle	8	53%
Head On	1	7%
Bicycle Hit by Vehicle	1	7%
Ran Off Road (Right)	1	7%
Rear End	2	13%
Sideswipe, Opposite Direction	2	13%

No fatal crashes occurred at the intersection during the study period. The 15 total reported crashes resulted in 16 total reported injuries from eight injury crashes. Of the 16 total injuries, two were Type A injuries, 11 were Type B injuries, and three were Type C injuries. Type A injuries are severe incapacitating injuries, Type B injuries are non-incapacitating visible injuries, and Type C injuries are non-visible injuries where the occupant complains of pain. Twelve of the injuries resulted from the right angle crashes and two injuries occurred during the collision involving a bicycle. Table $\mathbf{3}$ provides a summary of number of injuries by crash severity.

Table 3: Injuries by Severity

Injury Type	Number of Injuries	Percent of Total
Fatal Injuries	0	0%
Class A Injuries	2	13%
Class B Injuries	11	69%
Class C Injuries	3	19%
Total Non-Fatal Injuries	16	100%
Total Injuries	16	100%

The intersection crash rate was determined to be 0.83 crashes per million entering vehicles. The intersection severity rate is 0.11 injuries per million entering vehicles, with serious injuries being correlated with Type A injuries. Table 4 provides a summary of the intersection crash rates.

Table 4: Intersection Crash Rate Summary

Intersection	DHV	ADT	Crashes	Years	Crash Rate (CPMEV)	Total Injuries	Injury Rate	Severe (Type A + Fatal)	Severity Rate
Earlysville Road with Reas Ford Road	996	9960	15	5	0.83	16	0.88	2	0.11

The most concerning crash pattern at the intersection is the occurrence of right angle crashes involving entering motorists from the Reas Ford approach. Six of the intersection right angle crashes involved a motorist from Reas Ford colliding with a northbound motorist on Earlysville Road. A single angle crash also occurred from the Thrift Store open frontage approach and another from the Ravenna Community Church approach. Right angle crashes are concerning since this is the type of intersection crash that tends to result in injuries. The right angle crashes at this intersection accounted for 12 of the 16 documented injuries. The data shows that the majority of the angle crashes occurred from 2016 to 2018, with only one reported in 2019 and none in 2020 or the first half of 2021.

ALTERNATIVES DISCUSSION

Preliminary intersection alternatives have been developed as the basis for evaluation within this study founded upon the results of previous studies and screening for appropriate countermeasures for similar locations. Preliminary design was performed for each alternative utilizing aerial survey data obtained from VDOT. Initial cross sections were developed for each site specific improvement for the purpose of preparing accurate cost estimates.

Potential alternatives include widening Earlysville Road to construct left turn lanes in both directions and widening Reas Ford Road to provide an eastbound right turn lane (Alternative 1), Installing a traffic signal along with the Alternative 1 improvements (Alternative 2), and converting the intersection to a single lane roundabout (Alternative 3). A mini roundabout option (Alternative 3B) is also included as a variation of Alternative 3. An additional short-term alternative is also briefly discussed, which is simple installation of All Way Stop Control (AWSC) as an interim measure (Alternative 4).

Intersection Alternatives

Intersection Alternative improvements Include:

* No Build Alternative
* Alternative 1: Left-Turn Lanes Earlysville Road NB and SB \& Right-Turn Lane Reas Ford Road EB
* Alternative 2: Installation of a Traffic Signal along with Left-Turn Lanes Earlysville Road \& Right-

Turn Lane Reas Ford Road

* Alternative 3: Single Lane Roundabout
* Alternative 3B: Mini Roundabout
- Alternative 4: Interim AWSC

No Build Alternative

The Traffic Operations Study details analysis of Existing Condition, which equates as the No Build Condition for the intersection. The No Build Alternative is detailed by existing traffic analysis and current crash data. The No Build alternative is viable if existing intersection operation is acceptable in terms of level of service analysis and crash history, or if the cost of improvement is excessive compared to the anticipated benefit. Table 5 presents Pros and Cons for the No Build Alternative.

Table 5: No Build Pros \& Cons

Pros	Cons
No Cost	No Substantial Safety Enhancement
No Property Impacts	Potential Stakeholder Dissatisfaction
Earlysville Road Remains Free Flow	
Allows further Monitoring	
Intersection Operation is Already Acceptable	

Alternative 1 (Turn Lanes Only)

Alternative 1 include construction of exclusive left turn lanes on both Earlysville Road approaches and construction of an exclusive right turn lane on the eastbound Reas Ford Road approach without any modification to intersection control. The engineering construction estimate for the Alternative 1 improvements is $\$ \mathbf{1}, \mathbf{9 0 3}, \mathbf{4 9 5}$. A breakdown of costs for the estimate can be found Appendix \mathbf{E}.

Widening will require right of way acquisition but is not anticipated to adversely impact any adjacent property owners. Utility relocations are minimal or not necessary with this alternative. All driveway and property access is left intact as well. Table 6 presents Pros and Cons for Alternative 1.

Table 6: Alternative 1 Pros \& Cons

Pros	Cons
Less Costly Compared with other Alternatives	Does Not Address Right Angle Crashes
Reduces Potential for Rear End Crashes	Potential Stakeholder Dissatisfaction
Earlysville Road Remains Free Flow	Property Impacts are Moderate
Improves Operation of Side Streets	

A detailed exhibit of Alternative 1 is illustrated in Figure 5.

Alternative 2 (Traffic Signal Plus Turn Lanes)

Alternative 2 include the installation of a traffic signal along with construction of exclusive left-turn lanes on both Earlysville Road approaches and construction of an exclusive right-turn lane on the eastbound Reas Ford Road approach without any modification to intersection control. The engineering construction estimate for the Alternative $\mathbf{2}$ improvements is $\mathbf{\$ 2 , 3 3 0 , 9 9 5}$. A breakdown of costs for the estimate can be found Appendix E.

The same as Alternative 1, widening will require right of way acquisition but is not anticipated to adversely impact any adjacent property owners. Utility relocations are minimal or not necessary with this alternative. All driveway and property access is left intact as well. Installation of the signal improves ingress and egress from the Rivanna Church, Earlysville Business Park, and Earlysville Post Office. Due to proximity, the queuing from the traffic signal creates some interference with the open driveway to the Earlysville Exchange and VIP Customs. Table $\mathbf{7}$ presents Pros and Cons for Alternative 2.

Table 7: Alternative 2 Pros \& Cons

Pros	Cons
Less Costly than Roundabout Alternative	Long Term Maintenance
Reduces Potential for Angle Crashes	Increases Delay on Earlysville Road
Improves Operation of Side Streets	Property Impacts are Moderate
Gateway to Business Park	Potential for Increased Rear End Crashes
Less Property Impacts than Roundabout	Marginal Need for Signal in terms of Volume

A detailed exhibit of Alternative 2 is illustrated in Figure 6.

Alternative 3 (Single Lane Roundabout)

Alternative 3 includes construction of a single lane roundabout with an inscribed circle diameter of 170 feet. Due to the truck percentage and location of the Earlysville Business Park, the roundabout is designed to accommodate a WB-62 design vehicle. The engineering construction estimate for the Alternative 3 improvements is $\mathbf{\$ 4 , 2 6 7 , 0 6 6}$. A breakdown of costs for the estimate can be found Appendix E.

Construction of the single lane roundabout will have major impacts on right of way acquisition. The roundabout creates significant takes from the Rivanna Community Church, Earlysville Post Office, and likely total takes for the Earlysville Exchange on the northwest corner. One utility pole will be relocated. This alternative will require a complex Temporary Traffic Control (TTC) plan that adds significant cost. Table 8 presents Pros and Cons for Alternative 3.

Table 8: Alternative 3 Pros \& Cons

Pros	Cons
Greatest Reduction in Crashes Predicted	Most Costly Alternative
Traffic Calming Impact	Major Property Impacts
Better LOS Compared with Traffic Signal	Benefit vs Cost
Improves Operation of Side Streets	Constructability and MOT
Gateway to Business Park	

A detailed exhibit of Alternative $\mathbf{3}$ is illustrated in Figure 7.

Alternative 3B (Mini Roundabout)

Alternative 3B includes construction of a single lane mini roundabout with an inscribed circle diameter of 80 feet. Trucks would traverse a mountable circular median built within existing right of way. Due to the skewed angle of approach, the Reas Ford approach necessitates realignment for proper operation. The engineering construction estimate for the Alternative 3B improvements is $\mathbf{\$ 2 , 4 3 0 , 1 4 4}$. A breakdown of costs for the estimate can be found Appendix E.

Previous studies suggested construction of a mini roundabout. Typically, mini roundabouts should only be considered in areas where all approaching roadways have prevailing speed of less than 30 mph . Mini roundabouts are not well suited for high volumes of trucks, as trucks will occupy most of the intersection when turning. Mini roundabouts are most often employed in residential areas with lower volumes of traffic. With the volume of truck traffic generated by the Earlysville Industrial Park west of the intersection on Reas Ford Road and the prevailing speed of traffic, a mini roundabout may not be appropriate for this location.

Construction of the mini roundabout will have modest impacts on right of way acquisition for the realignment of the Reas Ford Road approach. Table 9 presents Pros and Cons for Alternative 3B.

Table 9: Alternative 3B Pros \& Cons

Pros	Cons
Greatest Reduction in Crashes Predicted	Impacts to Truck Traffic
Traffic Calming Impact	Not Appropriate with Industrial Park
Better LOS Compared with Traffic Signal	May be perceived as a Nuissance
Highest B/C safety Ratio	Constructability and MOT
Less Expensive than a Traditional Roundabout	

A detailed exhibit of Alternative 3B is illustrated in Figure 8.

Alternative 4 (Interim AWSC)

Alternative 4 is simply the installation of All Way Stop Control (AWSC) as a short-term interim potential option to address the occurrence of angle crashes at the intersection. This alternative includes installation of stop signs at the intersection with advance warning signs on Earlysville Road. The engineering construction estimate for the Alternative 4 improvements is of negligible cost. Costs to implement AWSC would be under $\$ \mathbf{5}, 000$ if implemented by VDOT forces.

There are no impacts with the installation of the AWSC aside from traffic operations, which is detailed in the capacity section of this report. AWSC is not a long term intersection control strategy and should be considered an interim measure only if determined to be viable to address angle crashes. No design schematic is provided for this interim alternative. Table $\mathbf{1 0}$ presents Pros and Cons for Alternative 4.

Table 10: Alternative 4 Pros \& Cons

Pros	Cons
Minimal Cost	Disruptive to Earlysville Road LOS
Easily Implemented	Potential for Rear End Crashes on Earlysville Road
Addresses Right Angle Crash Problem	Stakeholder Dissatisfaction
Improves Operation of Side Streets	Interim Solution Only
	No Gateway Effect for Industrial Park

SIGNAL WARRANT ANALYSIS

The Manual on Uniform Traffic Control Devices (MUTCD) contains nine warrants for investigating the need for a traffic signal at a particular intersection. The satisfaction of a signal warrant or warrants may indicate the need for the installation of a traffic signal. Three of the warrants deal directly with traffic volumes; two warrants focus on pedestrian issues; one focuses on safety; one on grade crossings; one on traffic signal progression; and one on a Planning level (non-data-based) analysis.

In accordance with MUTCD procedures, the impact of right turning traffic from the side street approaches was assessed to determine appropriate consideration as a component of the signal warrant analysis. Left turning motorists or those crossing the intersection are those most benefiting from a traffic signal, as right turning maneuvers typically can be made easily without a signal. Therefore, Pagones Theorem was utilized to reduce the number of right turns included in the minor street approach volume. A detailed report containing the hourly volumes at the intersection is located in Appendix D.

Warrant 1 - Eight-Hour Vehicular Volume

This warrant is intended for application at locations where there is a large volume of intersection traffic. To meet Warrant 1, the major street traffic (total of both approaches) must meet or exceed 350 vehicles per hour while the minor street traffic (one direction only) must meet or exceed 105 vehicles per hour for any eight hours of the day (Condition A - Minimum Vehicular Volume), or the major street traffic (total of both approaches) must meet or exceed 525 vehicles per hour while the minor street traffic (one direction only) must meet or exceed 53 vehicles per hour for any 8 hours of the day (Condition B - Interruption of Continuous Traffic). Warranting criteria have been reduced by 30% to utilize the 70% column to reflect the isolated location of the intersection. Adjustment of side street right turn volume was made using Pagones Theorem.

The minimum thresholds and conditions for this warrant as listed in the MUTCD are located on Table 11.
It is intended that warrant 1 be treated as a single warrant. If condition A is satisfied, then the criteria for warrant 1 is satisfied and condition B and the combination of condition A and B are not needed. Also, if condition B is satisfied, then the criteria for warrant 1 is satisfied and the combination of conditions A and B is not needed. Warrant 1 is considered the primary warrant for the installation of a signal and is often considered as singular standalone criteria.

Table 11: MUTCD Table 4C-1, Warrant 1 Eight-Hour Vehicular Volume
Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume
Condition A-Minimum Vehicular Volume

| Number of lanes for moving
 traffic on each approach | | Vehicles per hour on major street
 (total of both approaches) | | | Vehicles per hour on higher-volume
 minor-street approach (one direction only) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major Street | Minor Street | $100 \%^{\mathrm{a}}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{e}}$ | $56 \%^{\mathrm{d}}$ | $100 \%^{\mathrm{a}}$ | $80 \%^{\mathrm{b}}$ | $70 \%^{\mathrm{e}}$ | $56 \%^{\mathrm{d}}$ |
| 1 | 1 | 500 | 400 | 350 | 280 | 150 | 120 | 105 | 84 |
| 2 or more | 1 | 600 | 480 | 420 | 336 | 150 | 120 | 105 | 84 |
| 2 or more | 2 or more | 600 | 480 | 420 | 336 | 200 | 160 | 140 | 112 |
| 1 | 2 or more | 500 | 400 | 350 | 280 | 200 | 160 | 140 | 112 |

Condition B-Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach		Vehicles per hour on major street (total of both approaches)				Vehicles per hour on higher-volume minor-street approach (one direction only)			
Major Street	Minor Street	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\%	56\% ${ }^{\text {d }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\%	$56 \%{ }^{\text {d }}$
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	80	70	56

${ }^{\text {a }}$ Basic minimum hourly volume
${ }^{b}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{6}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
${ }^{d}$ May be used for combination of Conditions A and B after adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

After applying the warrant criteria for Existing Conditions, zero of the twelve hours meet the criteria set for Warrant 1 A , five hours meet the criteria for Warrant 1 B , and zero hours meet the criteria for combination of Warrant $1 \mathrm{~A} \& 1 \mathrm{~B}$ of the Major and Minor street volumes set in the " 70% " conditions. Criteria 1 B is three hours short of meeting the warranting criteria.

Warrant 1 is NOT MET.

Warrant 2 - Four Hour Vehicular Volumes

The warrant is intended for locations where, for a brief period of the day, minor road traffic experiences excessive delays in attempting to enter or cross the major street. Warrant 2 requires that the combination of the major street traffic (total of both approaches) and minor street traffic (one direction only) reaches a designated minimum volume during any four hours of any average day.

Only two hours meet the guideline criteria, short of the four required in evaluation of Existing Conditions. Evaluation of Warrant 2 is illustrated in Figure 9.

Warrant 2 is NOT MET.

Figure 9: Warrant 2 - Four-Hour Vehicular Volume

Warrant 3 - Peak Hour Vehicular Volumes

This warrant is intended to be used where large numbers of vehicles are attracted or discharged for brief periods and minor street traffic suffers excessive delay when entering or crossing the major street. Warrant 3 requires that the combination of the major street traffic (total of both approaches) and the minor street traffic (one approach only) reaches a designated minimum volume during any one hour of an average day.

For Existing Conditions, none of the twelve hours evaluated meet the criteria established for Warrant 3. Evaluation of Warrant 3 is illustrated in Figure 10.

Figure 10: Warrant 3 - Peak Hour Vehicular Volume

Warrant 3 is NOT MET.

Warrant 4 - Pedestrian Volume

The pedestrian volume signal warrant is intended for locations where traffic volumes on the major street are such that pedestrians experience excessive delay in crossing the major street. Warrant 4 requires a minimum of 75 pedestrians for each of any four hours or 93 pedestrians during the peak hour.

The volume of pedestrians at the intersection is far below the threshold required by the MUTCD.
Warrant 4 is NOT MET.

Warrant 5 - School Crossing

This warrant is intended for application where school children must cross the major street is the principle reason to consider the installation of a traffic control signal.

A signal at the subject intersection does not serve to create a controlled school crossing.
Warrant 5 is NOT MET.

Warrant 6 - Coordinated Signal System

This warrant is intended for intersections that fall within an existing coordinated signal system in order to maintain proper vehicle progression.

The subject intersection is isolated from any potential coordination with adjacent traffic signals.
Warrant 6 is NOT APPLICABLE.

Warrant 7 - Crash Experience

This warrant is intended for application where the severity and frequency of crashes are the principle reasons to consider installing a traffic control signal. Warrant 7 is applicable where five or more crashes that are potentially preventable by the installation of a traffic signal have occurred a 12-month period and the intersection traffic volumes meet the 56\% column from MUTCD Table 4C-1.

Based upon an evaluation of the intersection crash data, there was not a period where five correctable right angle crashes occurred within a one year period. Four right angle crashes occurred between $10 / 14 / 17$ and $8 / 17 / 18$, one short of the initial threshold. An additional angle crash occurred on 5/27/17, constituting five crashes in a fifteen month period. Since August of 2018, there was one reported crash that occurred at the intersection that is potentially correctable by the installation of a traffic signal. Within the five year study period, eight potentially correctable right angle crashes have occurred at the intersection. If the initial correctable crash threshold were satisfied, the subsequent 56% volume criteria would be met and Warrant 7 would be met.

Warrant 7 is NOT MET.

Warrant 8 - Roadway Network

A signal may be justified to encourage concentration and organization of traffic flow on a roadway network. According to the MUTCD, Warrant 8 can be considered when two or more major routes intersect and a minimum total entering volume of at least 1,000 vehicles during the peak hour of a typical weekday and has 5 -year projected traffic volumes that meet one or more of Warrants 1,2 , and 3.

The subject intersection does not involve the crossing of two major routes.
Warrant 8 is NOT APPLICABLE.

Warrant 9 - Intersection Near a Grade Crossing

This warrant is intended for use at a location where the proximity to the intersection of a grade crossing on an intersection approach controlled by a stop or yield sign is the principal reason to consider installing a traffic control signal.

There is not a railroad crossing near the intersection that impacts traffic flow.

Warrant 9 is NOT APPLICABLE.

None of the nine MUTCD warrants are satisfied for the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive. The heaviest side street movement at the intersection is the right turn from Reas Ford Road, and right turning traffic is generally only impeded by the queue of left turning traffic. Based upon review of the actual intersection conditions, the MUTCD traffic signal warranting criteria is not satisfied for the study intersection. As noted, If the initial correctable crash threshold were satisfied, Warrant 7 could be utilized to justify the installation of a traffic signal.

Copies of signal warrant analysis are included in Appendix D.

AUXILIARY LANE ANALYSIS

Auxiliary turn lane analysis was performed for the intersection using the VDOT Access Management Design Standards for Entrances and Intersections, Revised January of 2021. These standards are based upon the AASHTO publication A Policy on Geometric Design of Highways and Streets.

Intersection traffic volume and design speed are the primary variables evaluated to determine the need for auxiliary lanes. Left turn lane warranting criteria is outlined in Figure 3-4 through Figure 3-9 from VDOT Access Management Manual and are shown in Appendix G.

Based upon evaluation of actual intersection conditions, the Earlysville Road northbound approach meets the criteria shown in Figure 3-5 during the PM peak hour with 10% left turns. The left turn warranting criteria is not met northbound in the AM peak hour and not for the southbound approach in either the AM or PM peak hour. In addition, a right turn taper is warranted on the Reas Ford Road eastbound approach during the AM peak hour. Table $\mathbf{1 2}$ provides a summary of the various potential turn lanes evaluated and whether VDOT warranting criteria is satisfied.

Table 12: Auxiliary Lane Analysis Summary

Approach	Analysis Results		
		AM Peak Hour	PM Peak Hour
EB Approach (Reas Ford Road)	Right-Turn Lane	MET	NOT MET
WB Approach (Earlysville Forest Drive)	Right-Turn Lane	NOT MET	NOT MET
NB Approach (Earlysville Road)	Left-Turn Lane	NOT MET	MET
	Right-Turn Lane	NOT MET	NOT MET
SB Approach (Earlysville Road)	Left-Turn Lane	NOT MET	NOT MET
	Right-Turn Lane	NOT MET	NOT MET

CAPACITY ANALYSIS

The Highway Capacity Manual defines capacity as the maximum suitable flow rate at which vehicles reasonably can be expected to traverse a point during a specified time period. Capacity uses the measure of efficiency, Level-of-Service (LOS), to describe the traffic performance at intersections. LOS is defined for the overall intersection delay for signalized intersections. An acceptable LOS for a signalized intersection is considered to be LOS D or better (i.e. A, B, C or D).

At unsignalized intersections, the LOS is defined by the control delay for the movement that must yield right-of-way. It may be typical for stop-controlled minor streets to experience long delays during peak periods, while the majority of the traffic flows through the intersection on the major street travel unimpeded.

The procedures outlined in the Highway Capacity Manual; $6^{\text {th }}$ Edition were used as guidelines for the analysis of the study area intersections. This manual provides procedures for the analysis of both signalized and unsignalized intersections. LOS categories range from LOS " A " (best) to " F " (worst) as shown in Table 13.

Table 13: Level of Service Criteria

Level of Service	SIGNALIZED Intersection Control Delay (sec/veh)	UNSIGNALIZED Intersection Control Delay (sec/veh)	Intersection LOS Description
A	≤ 10.0	≤ 10.0	Free flow, insignificant delays.
B	$10.1-20.0$	$10.1-15.0$	Stable operation, minimal delays.
C	$20.1-35.0$	$15.1-25.0$	Stable operation, acceptable delays.
D	$35.1-55.0$	$25.1-35.0$	Restricted flow, common delays.
E	$55.1-80.0$	$35.1-50.0$	Maximum capacity, extended delays. Volumes at or near capacity. Long queues form upstream from intersection.
F	>80.0	>50.0	Forced flow, excessive delays. Represents jammed conditions. Intersection operates below capacity with low volumes. Queues may block upstream intersections.

LOS analysis was completed through the use of Synchro, version 10.3 and Sidra, version 9.0. These software packages categorize the LOS based on HCM methodology and criteria. According to industry standards, any signalized intersection or any approach of an unsignalized intersection is considered acceptable if the average delay is at LOS D or better with LOS A representing little or no delay. Any signalized intersection or approach with a LOS of E or F is considered substandard and may need solutions to improve the operational performance. Copies of the Synchro and Sidra reports are included in Appendix F .

No Build Conditions (Existing Configuration)

Analysis was performed of the existing intersection configuration with two way stop control on the Reas Ford Road and Earlysville Forest Drive approaches. Analysis shows that the left turn movements on both Earlysville Road approaches operate at LOS A during both the AM and PM peak hours, which control operation on each mainline approach in the absence of exclusive turn lanes. The Reas Ford Road eastbound approach currently operates at LOS C during both the AM and PM peak hours while the Earlysville Forest Drive westbound approach currently operates at LOS D during the AM peak hour and LOS C during the PM peak hour under two way stop control.

Alternative 1 - TWSC with Turn Lanes

Improvements included in Alternative $\mathbf{1}$ include construction of exclusive left turn lanes on both Earlysville Road approaches and construction of an exclusive right turn lane on the eastbound Reas Ford Road approach.

Following construction of the proposed exclusive auxiliary lanes, analysis indicates that the left turn movement on each Earlysville Road approach continues to operate at LOS A during both the AM and PM peak hours. The shared thru/right lane in each direction operates free flow traveling unimpeded through the intersection. The Reas Ford Road eastbound approach will continue to operate at LOS C during both the AM and PM peak hours with two way stop control. The Earlysville Forest Drive westbound approach will continue to operate at LOS D during the AM peak hour and LOS C during the PM peak hour with two way stop control.

Alternative 2 - Traffic Signal Plus Turn Lanes

Improvements included in Alternative $\mathbf{2}$ include installation of a traffic signal and construction of exclusive left turn lanes on both Earlysville Road approaches as well as a right turn lane on the Reas Ford eastbound approach.

Following installation of a traffic signal and auxiliary lanes at the intersection, analysis indicates that the Earlysville Road southbound approach is expected to operate at LOS B during the AM peak hour and LOS A during the PM peak hour. The Earlysville Road northbound approach is expected to operate at LOS A during both the AM and PM peak hours. The Reas Ford Road eastbound approach to Earlysville Road is expected to improve to LOS B during both the AM and PM peak hours. The Earlysville Forest Drive westbound approach to improve to LOS B during both the AM and PM peak hours. The overall signalized intersection is expected to operate at LOS B during the AM peak hour and LOS A during the PM peak hour.

Alternative 3 - Roundabout Conditions

Improvements included in Alternative $\mathbf{3}$ consist of conversion of the intersection to a single lane roundabout without any auxiliary or slip lanes. This analysis is assumed to be the same for a traditional roundabout or a mini roundabout.

Following construction of a single lane roundabout, analysis indicates that the Earlysville Road southbound approach is expected to operate at LOS A during both the AM and PM peak hours under
roundabout yield control. The Earlysville Road northbound approach is expected to operate at LOS A during both the AM and PM peak hours. The Reas Ford Road eastbound approach is expected to operate at LOS A during both the AM and PM peak hours. The Earlysville Forest Drive westbound approach is expected to operate at LOS A during both the AM and PM peak hours. The overall roundabout intersection is expected to operate at LOS A during both the AM and PM peak hours.

Alternative 4 - Short-Term AWSC

Alternative 4 should be considered as a short-term interim option to address the angle crash pattern and is not evaluated as a long term intersection control option. Level of Service (LOS) analysis is shown as a measure of the anticipated operation of the intersection.

Following installation of All Way Stop Control (AWSC), analysis indicates that the Earlysville Road southbound approach would be expected to deteriorate to LOS D during the AM peak hour and LOS B during the PM peak hour. The Earlysville Road northbound approach would be expected to deteriorate to LOS B during the AM peak hour and LOS C during the PM peak hour. The Reas Ford Road eastbound approach is expected to improve to LOS B during both the AM and PM peak hours. The Earlysville Forest Drive westbound approach is expected to improve to LOS B during the AM peak hour and LOS A during the PM peak hour. The overall AWSC intersection is expected to operate at LOS C during both the AM and PM peak hours.

Table 14 provides a summary of the LOS results during the weekday AM and PM peak hours for Existing Conditions, Alternative 1 (Turn Lanes Only), Alternative 2 (Traffic Signal Plus Turn Lanes), and Alternative 3 (Single Lane Roundabout).

Figure 11 shows the LOS during the weekday AM and PM peak hours for the various alternatives evaluated study intersection.

Intersection	Movement	No-Build Conditions				Alternative 1 (Turn Lanes Only)				Alternative 2 (Signal with TurnLanes)				Alternative 3/3B (Roundabouts)				Alternative 4 (AWSC)			
		AM Peak		PM Peak																	
		LOS	Delay																		
Intersection 1-Earlysville Road (Route 743) with Reas Ford Road /Earlysville Forest Drive (Route 660)	EB Left/Thru/Right	C	18.4	C	17.7	N/A	A	6.6	A	4.6	B	10.1	B	10.1							
	EB Left/Thru	N/A	N/A	N/A	N/A	C	21.6	C	23.9	B	15.3	B	12.7	N/A							
	EB Right-Turn	N/A	N/A	N/A	N/A	B	13.5	B	10.3	B	14.6	B	11.3	N/A							
	EB Approach	C	18.4	C	17.7	C	16.0	C	15.9	B	14.8	B	11.9	A	6.6	A	4.6	B	10.1	B	10.1
	WB Left/Thru/Right	D	25.5	C	19.5	D	25.5	C	19.8	B	16.0	B	12.9	A	3.9	A	4.9	B	10.3	A	9.8
	WB Approach	D	25.5	C	19.5	D	25.5	C	19.8	B	16.0	B	12.9	A	3.9	A	4.9	B	10.3	A	9.8
	NB Left-Turn	A	8.9	A	8.0	A	8.9	A	8.0	A	6.8	A	6.3	N/A							
	NB Thru/Right	N/A	N/A	N/A	N/A	N/A	FREE	N/A	FREE	A	6.1	A	9.4	N/A							
	NB Left/Thru	N/A	B	11.3	D	25.2															
	NB Right-Turn	N/A	FREE	N/A	FREE	N/A	A	7.9	A	7.6											
	NB Left/Thru/Right	N/A	A	4.2	A	7.1	N/A	N/A	N/A	N/A											
	NB Approach	N/A	1.9	N/A	0.9	N/A	1.9	N/A	0.9	A	6.2	A	9.1	A	4.2	A	7.1	B	11.1	C	23.9
	SB Left-Turn	A	7.5	A	8.5	A	7.5	A	8.5	A	5.7	A	7.2	N/A							
	SB Thru/Right	N/A	N/A	N/A	N/A	N/A	FREE	N/A	FREE	B	10.3	A	8.9	N/A							
Existing Four legged unsignalized intersection with stop control on Reas Ford Road \& Earlysville Forest Drive	SB Left/Thru/Right	N/A	A	8.5	A	5.2	D	29.0	B	12.9											
	SB Approach	N/A	0.2	N/A	0.4	N/A	0.2	N/A	0.4	B	10.2	A	8.8	A	8.5	A	5.2	D	29.0	B	12.9
	Overall	N/A	B	10.4	A	9.5	A	7.1	A	6.2	C	22.0	C	18.5							

QUEUING ANALYSIS

Queuing analysis was performed at the study intersection during the weekday AM and PM peak hours using the SimTraffic micro-simulation model, which is a simulation complement to the Synchro traffic analysis models utilized for the capacity analysis. The queuing calculations produced by SimTraffic are acknowledged within the industry to be a realistic replication of actual conditions. Each simulation model was seeded for 10 minutes and recorded for 60 minutes. The simulation was run five times and then averaged to estimate the $95^{\text {th }}$ percentile queuing for all scenarios. Queuing analysis was performed for roundabout analysis during the weekday AM and PM peak hours using Sidra modeling. The queuing calculations produced by Sidra are acknowledged within the industry to be a realistic replication of actual conditions for roundabout intersections.

No Build Conditions (Existing Configuration)

The queuing analysis indicates that no existing turning movements currently exceed the available storage length or impeded other traffic movements during the peak periods analyzed.

Alternative 1 - TWSC with Turn Lanes

Queuing analysis indicates that all conditions described in the No Build Conditions are expected to continue with similar queuing following construction of exclusive left turn lanes on Earlysville Road and a right turn lane on the Reas Ford eastbound approach. Queue lengths are reduced in comparison to No Build Conditions.

Alternative 2 - Traffic Signal Plus Turn Lanes

With the installation of a traffic signal, short queues are created on the Earlysville southbound and northbound approaches with the installation of a traffic signal. The queues are not substantial and are not anticipated to inhibit access to proposed exclusive left turn lanes. The projected queue is 129 feet northbound during the PM peak hour and 140 feet southbound during the AM peak hour. Queuing on the side road approaches is similar to No Build Conditions.

Alternative 3 - Roundabout

Queuing analysis indicates that queuing is anticipated to be minimal with roundabout operation. This analysis is assumed to be the same for a traditional roundabout and a mini roundabout. The most significant queue is the Earlysville southbound approach during AM peak hour and Earlysville northbound approach during PM peak hour. The projected queue is 110 feet southbound during the AM peak hour and 91 feet northbound during the PM peak hour.

Alternative 4 - Short-Term AWSC

Queuing analysis indicates that queuing is anticipated to be a more significant issue with AWSC. The most significant queue is the Earlysville southbound approach during AM peak hour and Earlysville northbound approach during PM peak hour. The projected queue is 129 feet northbound during the PM peak hour and 163 feet southbound during the AM peak hour.

Earlysville Road / Reas Ford Road Intersection Study

Table 15 presents the 95% queuing results and Figure 12 provides an illustration of anticipated queuing for the weekday AM and PM peak periods for the alternatives evaluated. Copies of the SimTraffic and Sidra analyses outputs are included in Appendix F.

Table 15: Queueing Analysis Summary

Intersection	Movement	Existing Storage Length (ft)	No-Build		Proposed Storage Length (ft)	Alternative 1		Proposed Storage Length (ft)	Alternative 2		Proposed Storage Length (ft)	Alternative 3/3B		Existing Storage Length (ft)	Alternative 4	
			AM	PM												
Intersection 1 - Earlysville Road (Route	EB Left/Thru/Right	--	64	66	N/A	N/A	N/A	N/A	N/A	N/A	--	24	14	--	50	49
743) with Reas Ford Road (Route	EB Left/Thru	N/A	N/A	N/A	--	38	39	--	41	47	N/A	N/A	N/A	N/A	N/A	N/A
660)/Earlysville Forest Drive	EB Right-Turn	N/A	N/A	N/A	125	45	44	125	49	39	N/A	N/A	N/A	N/A	N/A	N/A
	WB Left/Thru/Right	--	43	37	--	45	37	--	53	36	--	9	9	--	35	28
	NB Left/Thru	--	31	53	N/A	--	58	129								
	NB Right-Turn	100	0	0	N/A	100	27	57								
	NB Left-Turn	N/A	N/A	N/A	125	36	38	125	40	46	N/A	N/A	N/A	N/A	N/A	N/A
	NB Thru/Right	N/A	N/A	N/A	--	4	20	--	71	129	N/A	N/A	N/A	N/A	N/A	N/A
	NB Left/Thru/Right	N/A	--	25	91	N/A	N/A	N/A								
	SB Left/Thru/Right	--	17	31	N/A	N/A	N/A	N/A	N/A	N/A	--	110	41	--	163	77
	SB Left-Turn	N/A	N/A	N/A	125	8	21	125	22	27	N/A	N/A	N/A	N/A	N/A	N/A
	SB Thru/Right	N/A	N/A	N/A	--	5	9	--	140	98	N/A	N/A	N/A	N/A	N/A	N/A

SAFETY ANALYSIS

For purposes of comparing benefit vs cost for potential intersection improvement alternatives, evaluation of economic cost of safety performance resulting from motor vehicle crashes at the intersection was performed utilizing accepted FHWA safety analysis procedures. Crash Modification Factors (CMF's) depicting the proposed alternatives were selected from the VDOT Preferred CMF List, which is provided in Appendix \mathbf{H} for reference. A summary of the CMF's utilized is illustrated in Table 16.

Table 16: Utilized CMF Summary

Countermeasure	CMF \#	Crash Type	K	A	BC	0	Service Life	Reference
Add Left-Turn Lane to Major Approach of 3-Leg Stop Controlled Intersection	1	ALL	0.56	0.56	0.56	0.56	20 YRS	HSM Table 11-22
Convert Stop-Controlled Intersection to Signalized Intersection	2	ALL	0.642	0.642	0.642	0.639	20 YRS	CMF ID: 7983, 7986
Convert Stop-Controlled Intersection to Roundabout	3	ALL	0.56	0.18	0.18	0.56	20 YRS	CMF ID: 227, 228
Convert Minor Stop-Control to All-Way Stop Control	4	ALL	0.23	0.23	0.23	0.319	20 YRS	CMF ID: 3127, 3128

The selected CMF's were utilized to forecast the safety performance of each alternative as a means to estimate the anticipated benefit in terms of reduction of injury crashes. The CMF's shown in Table $\mathbf{1 6}$ are applied to recent crash data to predict the expected crash reduction from each alternative by severity. Safety performance is a key factor of this study, as all alternatives including No Build operate at acceptable level of service (LOS). For that reason, Benefit/Cost (B / C) is expressed simply in terms of safety performance based upon economic cost based upon injury severity over 20 years compared with cost of construction. Table 17 shows the annualized crash performance of the intersection based upon recent data and application of the CMF's. Each value reflects the number of crashes expected by severity annually following construction of each alternative.

Table 17: Annualized CMF Application

Crash Severity	Number of Crashes	Annualized Crashes	CMF 1 - ALT 1	CMF 2/CMF 1 ALT 2	CMF 3 -ALT 3/3B	CMF 4 - ALWSC
Fatal Crashes	0	0	0.00	0.00	0.00	
Class A Crashes	2	0.40	0.22	0.14	0.07	0.09
Class B Crashes	6	1.20	0.67	0.43	0.22	0.00
Class C Crashes	0	0.00	0.00	0.00	0.00	
Property Damage Only Crashes	7	1.40	0.78	0.57	0.78	0.45
Total	15	3.00	1.68	1.15	0.07	0.8

Utilizing the forecast annual crashes by severity along with the monetized crash value by severity established by FHWA, total safety performance was calculated from a baseline of No Build based upon recent crash history. Safety performance is monetized as a way to measure the effectiveness of constrained financial resources to achieve the most benefit. Table 18 illustrates the total forecast 20 year cost of motor vehicle crashes for each alternative. Since Alternative 4 (All Way Stop Control) is shown as a potential interim or short-term solution only, it is not applicable to present a 20 year service life for this scenario.

Table 18: Forecast Monetized Safety Performance by Alternative

Crash Severity	Monetized Crash Value (2021)	NO BUILD	CMF 1-ALT1	CMF 1/2 - ALT 2	CMF 3-ALT3	CMF 4-ALT4
Fatal Crashes	$\$ 5,861,850.00$	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$	
Class A Crashes	$\$ 315,837.00$	$\$ 126,334.80$	$\$ 70,747.49$	$\$ 45,419.89$	$\$ 22,740.26$	$\$ 29,057.00$
Class B Crashes	$\$ 115,515.00$	$\$ 138,618.00$	$\$ 77,626.08$	$\$ 49,835.94$	$\$ 24,951.24$	$\$ 31,882.14$
Class C Crashes	$\$ 65,653.00$	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$	$\$ 0.00$
Property Damage Only Crashes	$\$ 10,820.00$	$\$ 15,148.00$	$\$ 8,482.88$	$\$ 6,214.29$	$\$ 8,482.88$	$\$ 29,320.63$
Total		$\$ 280,100.80$	$\$ 156,856.45$	$\$ 101,470.12$	$\$ 56,174.38$	$\$ 90,259.77$
20 Year Safety Cost		$\$ 8,340,869.63$	$\$ 4,670,886.99$	$\$ 3,021,587.26$	$\$ 1,672,766.42$	n / a

As shown through the application of the CMF's, Alternative 3 (Roundabout) would be anticipated to result in the largest reduction in overall crashes at the intersection. Alternative 3 , however, also is the most expensive and the most impactful to adjacent property owners and the community. Further evaluation of anticipated monetized annual safety performance over a 20 year service life was compared to the estimated cost of construction for each alternative. The 20 year performance assumes annual inflation of 4% for cost of each crash type. By comparison of the forecast crash reduction with estimated cost, Alternative 3B (Mini Roundabout) was found to achieve the highest benefit/cost ratio of 2.7. A summary of B / C analysis is illustrated in Table 19.

Table 19: Benefit/Cost Comparison

Scenario	20 YR safety cost	ALT Cost	Crash Savings	B/C
NO Build	$\$ 8,340,870$	$\$ 0$	$\$ 0$	0
ALT 1	$\$ 4,670,887$	$\$ 1,903,345$	$\$ 3,669,983$	1.9
ALT 2	$\$ 3,021,587$	$\$ 2,330,995$	$\$ 5,319,282$	2.3
ALT 3	$\$ 1,672,766$	$\$ 4,267,066$	$\$ 6,668,103$	1.6
ALT 3B	$\$ 1,672,766$	$\$ 2,430,144$	$\$ 6,668,103$	2.7
ALT 4	n/a	n/a	n/a	n/a

Safety analysis was performed on the total number of crashes reported to occur for the five year period available from July 1, 2016 to June 30,2021 . Of the 15 crashes reported to occur, 11 occurred from July of 2016 to through 2018. Four crashes were reported to occur from January of 2019 through June of 2021. The safety analysis assumes crashes are linear for the reported time period. The data shows that fewer crashes have occurred in the most recent 30 month portion of the study, including only one crash after additional traffic control devices were installed.

CONCLUSIONS

This report summarizes evaluation of potential intersection improvement alternatives at the intersection of Earlysville Road (Route 743) with Reas Ford Road (Route 660) and Earlysville Forest Drive (Route 660) in Earlysville, Albemarle County. Albemarle County and The Virginia Department of Transportation (VDOT) previously identified safety concerns at the intersection of Earlysville Road and Reas Ford Road evidenced by crash data, and subsequently evaluated various options for modification of the intersection.

This study was initiated to evaluate the potential for intersection modification based upon previously identified safety concerns at the intersection. Evaluation of the collected data shows that the intersection currently operates at an acceptable Level of Service (LOS), with modest delay quantified on the side street approaches to the intersection. The intersection currently operates at acceptable LOS.

The most important operational issue at the intersection is the occurrence of right angle crashes at the intersection. Eight angle crashes were reported to occur at the intersection in the five year period evaluated, which resulted in 16 injuries including two serious injuries (Type A) and 11 significant injuries (Type B). All four alternatives evaluated are anticipated to reduce the occurrence of crashes, with the Roundabout and Traffic Signal options anticipated to address the angle crash pattern most significantly. The traditional roundabout, however, is the most expensive alternative and would have significant impacts in terms of right of way, utilities, and temporary traffic control. While the mini roundabout results in the highest benefit vs cost ratio in terms of safety impact, it is likely inappropriate for the intersection.

Based upon evaluation of the collected data and Alternatives evaluation, the following recommendations are made in regard to the intersection of Earlysville Road with Reas Ford Road and Earlysville Forest Drive:

- Based upon assessment of the entirety of the collected data, major intersection reconfiguration is not necessary at this time, and the No Build Alternative is appropriate. The intersection currently operates at adequate Level of Service (LOS) and the occurrence of crashes at the intersection has declined in the most recent 30 month period of the study.
- Due to the identified pattern of right angle crashes from 2016 to 2018, the intersection should continue to be monitored closely to determine if the recent reduction of intersection crashes following implementation of low cost safety improvements endures.
- If right angle crashes persist or increase where five or more occur in a 12 month period, a traffic signal can be installed in accordance with MUTCD Warrant Seven (Crash Safety). If safety performance or future traffic volume indicate that intersection control needs to be enhanced, a traffic signal or a roundabout both would provide adequate Level of Service.
- A mini roundabout appears to be inappropriate at this intersection due to volume, truck traffic, and prevailing speed. If a roundabout is considered in the future, a traditional roundabout is more appropriate for the conditions at this location.
- Ideally, construct auxiliary lanes including left turn lanes in both directions of Earlysville Road and a right turn lane on Reas Ford Road. VDOT warranting criteria based upon AASHTO is satisfied for these approaches. These auxiliary lanes, however, do not address the right angle crash pattern at the intersection or appreciably improve Level of Service.

Appendix A

Study Area Photos

Reas Ford Road Eastbound Approach to Earlysville Road

Earlysville Forest Drive Westbound Approach to Earlysville Road

Earlysville Road Northbound Approach to Reas Ford Road/Earlysville Forest Drive

Earlysville Road Southbound Approach to Reas Ford Road/Earlysville Forest Drive

Looking North from Reas Ford Road

Looking South from Reas Ford Road

Looking North from Earlysville Forest Drive

Looking South from Earlysville Forest Drive

Appendix B

Traffic Data

Appendix B-1

Turning Movement Counts

VEHICLE AND PEDESTRIAN VOLUME SUMMARY

COUNT LOCATION	
CITY	Earlysville
STATE	VA
DATE	9/23/2021
INTERSECTION	Int 1: Earlysville Road (CR 743) @ Reas Ford Road (SR 660)/Earlysville Forest Drive
COUNT BY	AMT

STREET	Earlysville Forest Dr From North				SR 660				CR 743					CR 743			Total			PEAK HR
TIME	L	T	R	TOT	N-S	E-W	ALL													
0700-0715	1	1	0	2	1	0	4	5	7	17	1	25	0	103	8	111	7	136	143	143
0715-0730	9	0	1	10	2	1	18	21	4	17	3	24	2	107	6	115	31	139	170	313
0730-0745	8	0	5	13	11	0	17	28	7	39	2	48	4	114	7	125	41	173	214	527
0745-0800	10	4	1	15	11	1	18	30	11	41	2	54	3	138	15	156	45	210	255	782
0800-0815	13	3	4	20	6	0	18	24	10	26	2	38	2	111	9	122	44	160	204	843
0815-0830	16	0	2	18	1	0	13	14	8	21	3	32	5	126	5	136	32	168	200	873
0830-0845	11	0	1	12	7	1	15	23	10	35	3	48	4	106	0	110	35	158	193	852
0845-0900	11	0	1	12	5	2	15	22	9	45	5	59	3	79	6	88	34	147	181	778
0900-0915	14	0	0	14	3	0	9	12	14	41	5	60	3	63	7	73	26	133	159	733
0915-0930	8	0	1	9	5	0	6	11	6	40	4	50	2	47	3	52	20	102	122	655
0930-0945	6	0	2	8	1	2	8	11	10	36	2	48	1	54	6	61	19	109	128	590
0945-1000	8	1	1	10	5	1	7	13	7	34	0	41	2	57	7	66	23	107	130	539
1000-1015	2	2	2	6	5	0	7	12	6	42	4	52	1	50	4	55	18	107	125	505
1015-1030	7	2	3	12	4	0	5	9	11	52	3	66	3	55	3	61	21	127	148	531
1030-1045	8	0	1	9	4	1	8	13	7	52	2	61	1	57	5	63	22	124	146	549
1045-1100	4	1	3	8	3	1	8	12	5	39	8	52	1	52	3	56	20	108	128	547
1100-1115	9	1	4	14	0	4	8	12	10	34	7	51	0	37	6	43	26	94	120	542
1115-1130	8	1	3	12	0	0	6	6	7	43	3	53	3	42	5	50	18	103	121	515
1130-1145	12	1	1	14	6	0	12	18	3	47	4	54	6	65	6	77	32	131	163	532
1145-1200	9	3	6	18	8	1	12	21	10	34	10	54	3	48	5	56	39	110	149	553
1200-1215	8	0	6	14	6	1	11	18	14	46	4	64	1	39	3	43	32	107	139	572
1215-1230	5	0	3	8	3	0	11	14	8	67	4	79	1	55	3	59	22	138	160	611
1230-1245	6	0	2	8	3	2	13	18	10	47	4	61	4	58	3	65	26	126	152	600
1245-1300	6	1	7	14	5	1	8	14	9	41	6	56	3	50	7	60	28	116	144	595
1300-1315	9	1	3	13	2	4	13	19	6	52	2	60	5	46	3	54	32	114	146	602
1315-1330	5	0	2	7	5	1	10	16	10	52	6	68	1	65	3	69	23	137	160	602
1330-1345	4	2	4	10	0	1	16	17	7	54	8	69	5	55	1	61	27	130	157	607
1345-1400	10	0	11	21	3	2	15	20	11	53	6	70	6	52	2	60	41	130	171	634
1400-1415	12	1	2	15	6	2	12	20	10	54	6	70	2	42	5	49	35	119	154	642
1415-1430	6	1	3	10	7	0	10	17	18	68	12	98	3	63	1	67	27	165	192	674
1430-1445	6	2	2	10	3	2	6	11	4	53	6	63	2	56	11	69	21	132	153	670
1445-1500	6	0	5	11	3	0	10	13	16	48	10	74	5	79	8	92	24	166	190	689
1500-1515	6	1	4	11	4	2	7	13	18	77	7	102	1	75	3	79	24	181	205	740
1515-1530	8	1	4	13	8	1	14	23	8	64	9	81	1	60	4	65	36	146	182	730
1530-1545	5	2	2	9	8	1	17	26	13	57	6	76	3	87	5	95	35	171	206	783
1545-1600	11	0	1	12	12	0	11	23	13	79	10	102	1	80	7	88	35	190	225	818
1600-1615	3	2	5	10	6	2	7	15	14	105	12	131	2	90	9	101	25	232	257	870
1615-1630	9	1	8	18	9	1	13	23	14	101	11	126	5	67	5	77	41	203	244	932
1630-1645	9	0	4	13	8	1	19	28	15	112	17	144	2	53	11	66	41	210	251	977
1645-1700	4	1	5	10	10	2	17	29	15	126	1	142	4	50	9	63	39	205	244	996
1700-1715	9	0	5	14	8	1	14	23	14	116	15	145	2	48	5	55	37	200	237	976
1715-1730	7	1	3	11	9	0	13	22	25	118	19	162	0	47	7	54	33	216	249	981
1730-1745	4	2	1	7	11	2	16	29	16	141	12	169	0	50	3	53	36	222	258	988
1745-1800	6	1	1	8	8	1	11	20	15	115	9	139	1	49	3	53	28	192	220	964
1800-1815	2	0	1	3	8	0	12	20	11	87	13	111	3	45	7	55	23	166	189	916
1815-1830	4	0	2	6	7	1	11	19	12	87	4	103	0	44	2	46	25	149	174	841
1830-1845	8	1	0	9	4	1	10	15	9	70	7	86	0	51	3	54	24	140	164	747
1845-1900	2	1	1	4	3	0	6	9	13	42	12	67	2	40	0	42	13	109	122	649
Peak HR AM																				
0730-0830	47	7	12	66	29	1	66	96	36	127	9	172	14	489	36	539	162	711	873	
Peak HR PM																				
1600-1700	25	4	22	51	33	6	56	95	58	444	41	543	13	260	34	307	146	850	996	
AM PHF	0.825				0.800				0.796				0.864				0.856			
PM PHF	0.708				0.819				0.943				0.760				0.969			

VEHICLE AND PEDESTRIAN VOLUME SUMMARY

COUNT LOCATION	
CITY	Earlysville
STATE	VA
DATE	9/23/2021
INTERSECTION	Int 1: Earlysville Road (CR 743) @ Reas Ford Road (SR 660)/Earlysville Forest Drive
COUNT BY	AMT

COUNT LOCATION	
CITY	Earlysville
STATE	VA
DATE	$9 / 23 / 2021$
INTERSECTION	Int 1: Earlysville Road (CR 743) @ Reas Ford Road (SR 660)/Earlysville Forest Drive
COUNT BY	AMT

Non-Vehicle Traffic
Thursday - 12 Hour Count

STREET	Earlysville Forest Dr			SR 660			CR 743			CR 743		
	From North			From South			From East			From West		
TIME	School Children	Pedestrians	Bicycles									
0700-0715	0	0	0	0	0	0	1	1	0	0	0	0
0715-0730	0	0	0	0	0	0	0	3	0	0	1	0
0730-0745	0	0	1	0	0	0	0	1	0	0	1	0
0745-0800	0	0	0	0	0	2	0	1	0	0	0	0
0800-0815	0	0	0	0	0	0	1	1	0	0	1	0
0815-0830	0	0	0	0	0	1	0	0	0	0	0	0
0830-0845	0	0	0	0	0	1	2	1	,	0	1	0
0845-0900	0	0	0	0	0	1	0	2	0	0	1	0
0900-0915	0	0	0	2	0	0	1	3	0	0	2	0
0915-0930	0	0	0	1	0	0	0	2	0	0	0	0
0930-0945	0	0	0	0	0	0	1	0	0	0	0	0
0945-1000	0	0	0	0	0	0	0	1	0	0	0	1
1000-1015	0	0	0	0	0	1	1	2	0	0	0	0
1015-1030	0	0	0	0	0	0	2	1	0	0	3	0
1030-1045	0	0	0	0	0	0	0	1	0	0	2	1
1045-1100	0	0	0	0	0	3	1		0	0	0	1
1100-1115	0	0	0	0	0	1	4	1	0	0	2	0
1115-1130	0	0	0	0	0	1	0	2	0	0	3	1
1130-1145	0	0	0	0	0	0	1	1	0	0	2	0
1145-1200	0	0	0	0	0	0	1	1	0	0	2	0
1200-1215	0	0	0	1	0	0	1	0	0	0	0	1
1215-1230	0	0	0	0	0	1	0	0	0	0	1	0
1230-1245	0	0	0	0	0	2	2	2	0	0	1	0
1245-1300	0	0	0	0	0	0	2	1	0	0	1	1
1300-1315	0	0	0	0	0	2	1	1	0	0	3	0
1315-1330	0	0	0	0	0	1	1	2	0	0	2	0
1330-1345	0	0	0	0	0	1	1	0	0	0	0	0
1345-1400	0	0	0	0	0	0	0		0	0	0	1
1400-1415	0	0	0	0	0	2	0	0	0	0	1	0
1415-1430	0	0	0	0	0	2	5	2	0	0	3	0
1430-1445	0	0	0	0	0	2	1	1	0	0	0	0
1445-1500	0	0	0	0	0	2	0	0	0	0	4	0
1500-1515	0	0	0	0	0	0	3	0	0	0	2	0
1515-1530	0	0	0	0	0	0	1	0	0	0	1	0
1530-1545	0	0	0	0	0	1	1	0	0	0	2	0
1545-1600	0	0	0	0	0	2	1	0	0	0	1	0
1600-1615	0	0	0	0	0	1	1	0	0	0	0	0
1615-1630	0	0	0	0	0	0	0	0	0	0	0	0
1630-1645	0	0	0	0	0	1	2	1	0	0	1	1
1645-1700	0	0	0	0	0	2	0	0	0	1	0	1
1700-1715	0	0	0	0	0	0	0	0	0	0	1	0
1715-1730	0	0	0	0	0	0	0	0	0	0	0	0
1730-1745	0	0	0	0	0	0	2	0	0	0	0	0
1745-1800	0	0	0	1	0	0	0	0	0	0	0	0
1800-1815	0	0	0	0	0	1	0	0	0	0	0	0
1815-1830	0	0	0	0	0	1	0	0	0	0	0	0
1830-1845	0	0	0	0	0	0	0	0		0	1	0
1845-1900	0	0	0	0	0	0	0	0	0	0	0	0
Peak HR AM												
0730-0830	0	0	1	0	0	3	1	3	0	0	2	0
Peak HR PM												
1600-1700	0	0	0	0	0	4	3	1	0	1	1	2

Appendix C

Crash Data

Appendix D

Signal Warrant Analysis

Appendix D-1

Warrant 1: Eight-Hour Warrant 2021 Existing Conditions

VEHICLE AND PEDESTRIAN VOLUME SUMMARY

COUNT LOCATION	
CITY	Earlysville
STATE	VA
DATE	$9 / 23 / 2021$
INTERSECTION	Int 1: Earlysville Road (CR 743) @ Reas Ford Road (SR 660)/Earlysville Forest Drive
COUNT BY	AMT

All Vehicles
Thursday - 12 Hour Count

STREET	Earlysville Forest Dr From North					SR 660					CR 743				CR 743								
						From East	From West																
TIME	L	T	R	R*	TOT						L	T	R	R*	TOT	L	T	R	TOT	L	T	R	TOT
0700-0715	1	1	0	0	2	1	0	4	2	3	7	17	1	25	0	103	8	111					
0715-0730	9	0	1	1	10	2	1	18	11	14	4	17	3	24	2	107	6	115					
0730-0745	8	0	5	3	11	11	0	17	10	21	7	39	2	48	4	114	7	125					
0745-0800	10	4	1	1	15	11	1	18	11	23	11	41	2	54	3	138	15	156					
0800-0815	13	3	4	2	18	6	0	18	11	17	10	26	2	38	2	111	9	122					
0815-0830	16	0	2	1	17	1	0	13	8	9	8	21	3	32	5	126	5	136					
0830-0845	11	0	1	1	12	7	1	15	9	17	10	35	3	48	4	106	0	110					
0845-0900	11	0	1	1	12	5	2	15	9	16	9	45	5	59	3	79	6	88					
0900-0915	14	0	0	0	14	3	0	9	5	8	14	41	5	60	3	63	7	73					
0915-0930	8	0	1	1	9	5	0	6	4	9	6	40	4	50	2	47	3	52					
0930-0945	6	0	2	1	7	1	2	8	5	8	10	36	2	48	1	54	6	61					
0945-1000	8	1	1	1	10	5	1	7	4	10	7	34	0	41	2	57	7	66					
1000-1015	2	2	2	1	5	5	0	7	4	9	6	42	4	52	1	50	4	55					
1015-1030	7	2	3	2	11	4	0	5	3	7	11	52	3	66	3	55	3	61					
1030-1045	8	0	1	1	9	4	1	8	5	10	7	52	2	61	1	57	5	63					
1045-1100	4	1	3	2	7	3	1	8	5	9	5	39	8	52	1	52	3	56					
1100-1115	9	1	4	2	12	0	4	8	5	9	10	34	7	51	0	37	6	43					
1115-1130	8	1	3	2	11	0	0	6	4	4	7	43	3	53	3	42	5	50					
1130-1145	12	1	1	1	14	6	0	12	7	13	3	47	4	54	6	65	6	77					
1145-1200	9	3	6	4	16	8	1	12	7	16	10	34	10	54	3	48	5	56					
1200-1215	8	0	6	4	12	6	1	11	7	14	14	46	4	64	1	39	3	43					
1215-1230	5	0	3	2	7	3	0	11	7	10	8	67	4	79	1	55	3	59					
1230-1245	6	0	2	1	7	3	2	13	8	13	10	47	4	61	4	58	3	65					
1245-1300	6	1	7	4	11	5	1	8	5	11	9	41	6	56	3	50	7	60					
1300-1315	9	1	3	2	12	2	4	13	8	14	6	52	2	60	5	46	3	54					
1315-1330	5	0	2	1	6	5	1	10	6	12	10	52	6	68	1	65	3	69					
1330-1345	4	2	4	2	8	0	1	16	10	11	7	54	8	69	5	55	1	61					
1345-1400	10	0	11	7	17	3	2	15	9	14	11	53	6	70	6	52	2	60					
1400-1415	12	1	2	1	14	6	2	12	7	15	10	54	6	70	2	42	5	49					
1415-1430	6	1	3	2	9	7	0	10	6	13	18	68	12	98	3	63	1	67					
1430-1445	6	2	2	1	9	3	2	6	4	9	4	53	6	63	2	56	11	69					
1445-1500	6	0	5	3	9	3	0	10	6	9	16	48	10	74	5	79	8	92					
1500-1515	6	1	4	2	9	4	2	7	4	10	18	77	7	102	1	75	3	79					
1515-1530	8	1	4	2	11	8	1	14	8	17	8	64	9	81	1	60	4	65					
1530-1545	5	2	2	1	8	8	1	17	10	19	13	57	6	76	3	87	5	95					
1545-1600	11	0	1	1	12	12	0	11	7	19	13	79	10	102	1	80	7	88					
1600-1615	3	2	5	3	8	6	2	7	4	12	14	105	12	131	2	90	9	101					
1615-1630	9	1	8	5	15	9	1	13	8	18	14	101	11	126	5	67	5	77					
1630-1645	9	0	4	2	11	8	1	19	11	20	15	112	17	144	2	53	11	66					
1645-1700	4	1	5	3	8	10	2	17	10	22	15	126	1	142	4	50	9	63					
1700-1715	9	0	5	3	12	8	1	14	8	17	14	116	15	145	2	48	5	55					
1715-1730	7	1	3	2	10	9	0	13	8	17	25	118	19	162	0	47	7	54					
1730-1745	4	2	1	1	7	11	2	16	10	23	16	141	12	169	0	50	3	53					
1745-1800	6	1	1	1	8	8	1	11	7	16	15	115	9	139	1	49	3	53					
1800-1815	2	0	1	1	3	8	0	12	7	15	11	87	13	111	3	45	7	55					
1815-1830	4	0	2	1	5	7	1	11	7	15	12	87	4	103	0	44	2	46					
1830-1845	8	1	0	0	9	4	1	10	6	11	9	70	7	86	0	51	3	54					
1845-1900	2	1	1	1	4	3	0	6	4	7	13	42	12	67	2	40	0	42					

WARRANT 1 -- EIGHT-HOUR VEHICULAR VOLUME

2021 Existing Year

Major Street	Ealysville Road
Minor Street	Reas Ford Road
Jurisdiction	Earlysville
85% Speed $>40 \mathrm{mph}$	NO
Population < 10K	YES
\# of Lanes on Major Street	$\mathbf{1}$
\# of Lanes on Minor Street	$\mathbf{1}$
Minor St. Right Turns Discounted	YES
Have five (5) correctable crashes occurred in 1 year?	NO

WARRANT 1 -- EIGHT-HOUR VEHICULAR VOLUME CONDITION 'A' -- MINIMUM VEHICULAR VOLUME					
Major Street			Ealysville Road		
Minor Street			Reas Ford Road		
Jurisdiction			Earlysville		
85\% Speed > 40 mph			NO		
Population < 10K			YES		
\# of Lanes on Major Street			1		
\# of Lanes on Minor Street			1		
Minor St. Right Turns Discounted			YES		
Major St. Warranting Volume			500		
Minor St. Warranting Volume			150		
30\% Warrant Volume Reduction			YES		
HOUR	$\begin{gathered} \hline \text { MAJOR } \\ \text { STREET } \\ \text { VOLUME } \\ \hline \end{gathered}$	MINOR STREET VOLUME	MAJOR ST WARRANT VOLUME	MINOR ST WARRANT VOLUME	$\begin{gathered} \text { HOUR } \\ \text { MET } \end{gathered}$
7-8 AM	658	61	350	105	NO
8-9 AM	633	59	350	105	NO
9-10 AM	451	35	350	105	NO
10-11 AM	466	35	350	105	NO
11-12 PM	438	42	350	105	NO
12-1 PM	487	47	350	105	NO
1-2 PM	511	50	350	105	NO
2-3 PM	582	46	350	105	NO
3-4 PM	688	65	350	105	NO
4-5 PM	850	73	350	105	NO
5-6 PM	830	72	350	105	NO
6-7 PM	564	47	350	105	NO
FINDINGS:					
Number of Hours Condition 'A' Met			0		
Condition 'A' Satisfied?			NO		
COMMENTS:					

WARRANT 1 -- EIGHT-HOUR VEHICULAR VOLUME					
COMBINATION OF CONDITION 'A' \& 'B' (80\% VOLUME)					
Major Street			Ealysville Road		
Minor Street			Reas Ford Road		
Jurisdiction			Earlysville		
CONDITION 'A'					
HOUR	$\begin{gathered} \text { MAJOR } \\ \text { STREET } \\ \text { VOLUME } \end{gathered}$	MINOR STREET VOLUME	MAJOR ST WARRANT VOLUME	MINOR ST WARRANT VOLUME	HOUR MET
7-8 AM	658	61	280	84	NO
8-9 AM	633	59	280	84	NO
9-10 AM	451	35	280	84	NO
10-11 AM	466	35	280	84	NO
11-12 PM	438	42	280	84	NO
12-1 PM	487	47	280	84	NO
1-2 PM	511	50	280	84	NO
2-3 PM	582	46	280	84	NO
3-4 PM	688	65	280	84	NO
4-5 PM	850	73	280	84	NO
5-6 PM	830	72	280	84	NO
6-7 PM	564	47	280	84	NO
CONDITION 'B'					
HOUR	MAJOR STREET VOLUME	MINOR STREET VOLUME	$\begin{gathered} \hline \text { MAJOR ST } \\ \text { WARRANT } \\ \text { VOLUME } \\ \hline \end{gathered}$	MINOR ST WARRANT VOLUME	$\begin{gathered} \text { HOUR } \\ \text { MET } \end{gathered}$
7-8 AM	658	61	420	42	YES
8-9 AM	633	59	420	42	YES
9-10 AM	451	35	420	42	NO
10-11 AM	466	35	420	42	NO
11-12 PM	438	42	420	42	YES
12-1 PM	487	47	420	42	YES
1-2 PM	511	50	420	42	YES
2-3 PM	582	46	420	42	YES
3-4 PM	688	65	420	42	YES
4-5 PM	850	73	420	42	YES
5-6 PM	830	72	420	42	YES
6-7 PM	564	47	420	42	YES
FINDINGS:					
Number of Hours Combination A\&B Met			0		
Combination of A\&B Satisfied?			NO		
COMMENTS:					

Appendix D-2

Warrant 2: 4-Hour Signal Warrant 2021 Existing Conditions

Warrant 2: Four-hour Vehicular Volume

1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

Intersection Information

	Major Street	Minor Street
Street Name	Earlysville Rd	Earlysville Forest Dr
Direction	EB/WB	$\mathrm{NB} / \mathrm{SB}$
Number of Lane:	1	1
Approch Speed	35	35

Warrant 2 Met?

Details:

Notes	2 Hours met (4 required)
Low populatior	Yes

Four-Hour Vehicular Volume
Community Population Less Than 10,000 or Major Street Approach Speed Above 40 mph

- Warrant Curve
\square Warranted
- Unwarranted
- 1 Major, 1 Minor

1 Major, 2+ Minor
$2+$ Major, 1 Minor
2+ Major, 2+ Minor

Warrant 2: Four-hour Vehicular Volume
1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

Hourly Volumes		
Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
00:00:00-01:00:00	0	0
01:00:00-02:00:00	0	0
02:00:00-03:00:00	0	0
03:00:00-04:00:00	0	0
04:00:00-05:00:00	0	0
05:00:00-06:00:00	0	0
06:00:00-07:00:00	0	0
07:00:00-08:00:00	658	61
08:00:00-09:00:00	633	59
09:00:00-10:00:00	451	40
10:00:00-11:00:00	466	35
11:00:00-12:00:00	438	53
12:00:00-13:00:00	487	48
13:00:00-14:00:00	511	51
14:00:00-15:00:00	582	46
15:00:00-16:00:00	688	65
16:00:00-17:00:00	850	72
17:00:00-18:00:00	830	73
18:00:00-19:00:00	564	48
19:00:00-20:00:00	0	0
20:00:00-21:00:00	0	0
21:00:00-22:00:00	0	0
22:00:00-23:00:00	0	0

Warrant 2: Four-hour Vehicular Volume
1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

$23: 00: 00-00: 00: 00$	0	0

Warranted Hours		
Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
$15: 30: 00-16: 30: 00$	796.00	68.00
$16: 30: 00-17: 30: 00$	831.00	76.00

Note: Only data of hours warranted is represented in the above table.

Appendix D-3

Warrant 3: Peak Hour Signal Warrant 2021 Existing Conditions

Warrant 3: Peak Hour

1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

Intersection Information

	Major Street	Minor Street
Street Name	Earlysville Rd	Earlysville Forest Dr
Direction	EB/WB	NB/SB
Number of Lane:	1	1
Approch Speed	35	35

Warrant 3 Met? No

Details

Low Population:	Yes		
Condition A Met‘	No		
Notes	0 Hours met (1 required)	Condition B Met	No
Minor Approach Time Delay Condition Met?	Notes	0 Hours met (1 required)	
Minor Approach Volume Condition Met?	Not Met		
Total Entering Intersection Volume Condition Met?	Not Met		

Peak Hour Vehicular Volume Community Population Less Than 10,000 or Major Street Approach Speed Above 40 mph

Warrant 3: Peak Hour
1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

Hour	Major Street Total All Approaches (vph)	Minor Street Highest Volume Approach (vph)
$7: 00$	658	61
$8: 00$	633	59
$9: 00$	451	40
$10: 00$	466	35
$11: 00$	438	53
$12: 00$	487	48
$13: 00$	511	51
$14: 00$	582	46
$15: 00$	688	65
$16: 00$	850	72
$17: 00$	830	73

Appendix D-4

Warrant 7: Crash Experience 2021 Existing Conditions

WARRANT 7 -- CRASH EXPERIENCE

FINDINGS:

Condition A Satisfied?	0
Condition B Satisfied?	5
WARRANT 7 Satisfied?	NO

Warrant 7: Crash Experience

1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

Intersection Information

Major Street Name	Earlysville Rd
Major Street Direction	EB/WB
Minor Street Direction	NB/SB

Details:

Low Population?	Yes Tr	Traffic Volume Condition Met?	Yes
Major Street Speed Limit	35		10 Hours Met (8 Required)
Major Street 85th-\% tile Speed	0.00 P	Ped Volume Condition Met?	No
			0 Hours Met (8 Required)
	Qualifying Crashes	7	
	Adequate Alternative Trials?	? No	

Hour	Traffic Volumes				Pedestrian Volumes			
	Major Street Vehicles	Minor Street Vehicles	80\% Standard Met? A or B		Northbound Ped Volumes		Southbound Ped Volumes	
			Conditio n A	Condition B	Peds	> 80?	Peds	> 80 ?
07:00 to 08:00	658	0	No	No	0	No	0	No
07:15 to 08:15	682	0	No	No	0	No	0	No
07:30 to 08:30	711	0	No	No	0	No	0	No
07:45 to 08:45	696	0	No	No	0	No	0	No
08:00 to 09:00	633	0	No	No	0	No	0	No
08:15 to 09:15	606	0	No	No	0	No	0	No

Warrant 7: Crash Experience

1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

08:30 to 09:30	540	0	No	No	0	No	0	No
08:45 to 09:45	491	0	No	No	0	No	0	No
09:00 to 10:00	451	0	No	No	0	No	0	No
09:15 to 10:15	425	0	No	No	0	No	0	No
09:30 to 10:30	450	0	No	No	0	No	0	No
09:45 to 10:45	465	0	No	No	0	No	0	No
10:00 to 11:00	466	0	No	No	0	No	0	No
10:15 to 11:15	453	0	No	No	0	No	0	No
10:30 to 11:30	429	0	No	No	0	No	0	No
10:45 to 11:45	436	0	No	No	0	No	0	No
11:00 to 12:00	438	0	No	No	0	No	0	No
11:15 to 12:15	451	0	No	No	0	No	0	No
11:30 to 12:30	486	0	No	No	0	No	0	No
11:45 to 12:45	481	0	No	No	0	No	0	No
12:00 to 13:00	487	0	No	No	0	No	0	No
12:15 to 13:15	494	0	No	No	0	No	0	No

Warrant 7: Crash Experience

1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

12:30 to 13:30	493	0	No	No	0	No	0	No
12:45 to 13:45	497	0	No	No	0	No	0	No
13:00 to 14:00	511	0	No	No	0	No	0	No
13:15 to 14:15	516	0	No	No	0	No	0	No
13:30 to 14:30	544	0	No	No	0	No	0	No
13:45 to 14:45	546	0	No	No	0	No	0	No
14:00 to 15:00	582	0	No	No	0	No	0	No
14:15 to 15:15	644	0	No	No	0	No	0	No
14:30 to 15:30	625	0	No	No	0	No	0	No
14:45 to 15:45	664	0	No	No	0	No	0	No
15:00 to 16:00	688	0	No	No	0	No	0	No
15:15 to 16:15	739	0	No	No	0	No	0	No
15:30 to 16:30	796	0	No	No	0	No	0	No
15:45 to 16:45	835	0	No	No	0	No	0	No
16:00 to 17:00	850	0	No	No	0	No	0	No
16:15 to 17:15	818	0	No	No	0	No	0	No

Warrant 7: Crash Experience
1: Earlysville Rd @ Reas Ford Road/Earlysville Forest Drive

16:30 to 17:30	831	0	No	No	0	No	0	No
16:45 to 17:45	843	0	No	No	0	No	0	No
17:00 to 18:00	830	0	No	No	0	No	0	No
17:15 to 18:15	796	0	No	No	0	No	0	No
17:30 to 18:30	729	0	No	No	0	No	0	No
17:45 to 18:45	647	0	No	No	0	No	0	No
18:00 to 19:00	564	0	No	No	0	No	0	No
18:15 to 19:15	398	0	No	No	0	No	0	No
18:30 to 19:30	249	0	No	No	0	No	0	No
18:45 to 19:45	109	0	No	No	0	No	0	No

Appendix E

Alternative Cost Analysis

Appendix E-1

Alternative 1: Cost Analysis

Albemarle County Earlysville Road / Reas Ford Road Turn Lanes November 16, 2021 Preliminary Cost Estimate								
$\begin{aligned} & \hline \text { ITEM } \\ & \text { CODE } \end{aligned}$	SPEC	ITEM DESCRIPTION	UNITS	QUANTITY		T PRICE		AL PRICE
00100	513	MOBILIZATION	LS	1	\$	59,000	\$	59,000
00101	105	CONSTRUCTION SURVEYING (CONSTRUCTION)	LS	1	\$	7,000	\$	7,000
00110	301	CLEARING AND GRUBBING	ACRE	1.0	\$	15,000	\$	15,000
EARTHWORK								
00120	303	REGULAR EXCAVATION	CY	1,000	\$	18	\$	18,000
00140	303, 305	BORROW EXCAVATION	CY	500	\$	23	\$	11,500
INCIDENTALS								
68576	315, 412	SAW CUT	LF	2,976	\$	10	\$	29,760
PAVEMENT								
16350	315	ASPHALT CONC. TYPE SM-12.5A (NEW SECTION)	TON	180	\$	115	\$	20,700
10610	315	ASPHALT CONC. TYPE IM-19.0A (NEW SECTION)	TON	224	\$	115	\$	25,760
16390	315	ASPH. CONC. BASE COURSE TY. BM-25.0A (NEW SECTION)	TON	359	\$	105	\$	37,695
10128	308, 309	AGGR. BASE MATL. TY. I NO. 21B (NEW SECTION)	TON	725	\$	40	\$	29,000
10628	515	FLEXIBLE PAVEMENT PLANNING 0" - 2"	SY	4,828	\$	6	\$	28,968
16350	315	ASPHALT CONC. TYPE SM-12.5A (OVERLAY)	TON	531	\$	100	\$	53,100
24430	508	DEMOLITION OF PAVEMENT (FLEXIBLE)	SY	50	\$	20	\$	1,000
DRAINAGE \& BASINS								
NS		DRAINAGE ITEMS	LS	1	\$	150,000	\$	150,000
EROSION AND SEDIMENT CONTROL								
NS		E\&S ITEMS	LS	1	\$	30,000	\$	30,000
TRAFFIC								
NS		SIGNING \& PAVEMENT MARKING	LS	1	\$	30,000	\$	30,000
ROADSIDE DEVELOPMENT								
NS		ROADSIDE DEVELOPMENT ITEMS	LS	1	\$	25,000	\$	25,000
MAINTENANCE OF TRAFFIC								
NS	-	MOT	LS	1	\$	200,000	\$	200,000
Estimated Construction Cost							\$	771,483
CONTINGENCY CEI						50\%	\$	385,742
						18\%	\$	190,964
TOTAL CONSTRUCTION							\$	1,348,189
PE \& Permitting (25\% of Construction Cost excluding CEI)							\$	289,306
Preliminary Right of Way and Easements							\$	266,000
Utility Easements and Relocation Cost							\$	-
R/W \& UTILITIES (2020)							\$	266,000
Environmental Mitigation (2020)							\$	-
PROJECT GRAND TOTAL (FY 2020)							\$	1,903,495

Appendix E-2

Alternative 2: Cost Analysis

Albemarle County Earlysville Road / Reas Ford Road Turn Lanes November 16, 2021 Preliminary Cost Estimate								
$\begin{aligned} & \hline \text { ITEM } \\ & \text { CODE } \end{aligned}$	SPEC	ITEM DESCRIPTION	UNITS	QUANTITY		T PRICE		TAL PRICE
00100	513	MOBILIZATION	LS	1	\$	59,000	\$	59,000
00101	105	CONSTRUCTION SURVEYING (CONSTRUCTION)	LS	1	\$	7,000	\$	7,000
00110	301	CLEARING AND GRUBBING	ACRE	1.0	\$	15,000	\$	15,000
EARTHWORK								
00120	303	REGULAR EXCAVATION	CY	1,000	\$	18	\$	18,000
00140	303, 305	BORROW EXCAVATION	CY	500	\$	23	\$	11,500
INCIDENTALS								
68576	315, 412	SAW CUT	LF	2,976	\$	10	\$	29,760
PAVEMENT								
16350	315	ASPHALT CONC. TYPE SM-12.5A (NEW SECTION)	TON	180	\$	115	\$	20,700
10610	315	ASPHALT CONC. TYPE IM-19.0A (NEW SECTION)	TON	224	\$	115	\$	25,760
16390	315	ASPH. CONC. BASE COURSE TY. BM-25.0A (NEW SECTION)	TON	359	\$	105	\$	37,695
10128	308, 309	AGGR. BASE MATL. TY. I NO. 21B (NEW SECTION)	TON	725	\$	40	\$	29,000
10628	515	FLEXIBLE PAVEMENT PLANNING 0" - 2"	SY	4,828	\$	6	\$	28,968
16350	315	ASPHALT CONC. TYPE SM-12.5A (OVERLAY)	TON	531	\$	100	\$	53,100
24430	508	DEMOLITION OF PAVEMENT (FLEXIBLE)	SY	50	\$	20	\$	1,000
DRAINAGE \& BASINS								
NS		DRAINAGE ITEMS	LS	1	\$	150,000	\$	150,000
EROSION AND SEDIMENT CONTROL								
NS		E\&S ITEMS	LS	1	\$	30,000	\$	30,000
TRAFFIC								
NS		SIGNING \& PAVEMENT MARKING	LS	1	\$	30,000	\$	30,000
ROADSIDE DEVELOPMENT								
NS		ROADSIDE DEVELOPMENT ITEMS	LS	1	\$	25,000	\$	25,000
MAINTENANCE OF TRAFFIC								
NS	-	MOT	LS	1	\$	200,000	\$	200,000
SIGNALIZATION								
NS	-	TRAFFIC SIGNAL	LS	1	\$	200,000	\$	200,000
Estimated Construction Cost							\$	971,483
CONTINGENCY						50\%	\$	485,742
CEI ${ }^{\text {TOTAL CONSTRUCTION }}$						18\%	\$	243,464
							\$	1,700,689
PE \& Permitting (25\% of Construction Cost excluding CEI)							\$	364,306
Preliminary Right of Way and Easements							\$	266,000
Utility Easements and Relocation Cost							\$	-
R/W \& UTILITIES (2020)							\$	266,000
Environmental Mitigation (2020)							\$	-
PROJECT GRAND TOTAL (FY 2020)							\$	2,330,995

Appendix E-3

Alternative 3: Cost Analysis

		Albemarle County Earlysville Road / Reas Ford Road November 16, 2021 Preliminary Cost Estim	dabou					
$\begin{aligned} & \text { ITEM } \\ & \text { CODE } \end{aligned}$	SPEC	ITEM DESCRIPTION	UNITS	QUANTITY		T PRICE		TAL PRICE
00100	513	MOBILIZATION	LS	1	\$	93,368	\$	93,368
00101	105	CONSTRUCTION SURVEYING (CONSTRUCTION)	LS	1	\$	12,674	\$	12,674
00110	301	CLEARING AND GRUBBING	ACRE	1.6	\$	15,000	\$	24,000
		EARTHWORK						
00120	303	REGULAR EXCAVATION	CY	2,891	\$	18	\$	52,038
00140	303, 305	BORROW EXCAVATION	CY	1,789	\$	23	\$	41,147
00128	ATTD	UNSUITABLE EXCAVATION	CY	320	\$	20	\$	6,400
		INCIDENTALS						
12600	502	STD. COMB. CURB \& GUTTER CG-6	LF	210	\$	34	\$	7,140
12610	502	RADIAL COMB. CURB \& GUTTER CG-6	LF	310	\$	35	\$	10,850
12032	502	RADIAL CURB CG-3	LF	420	\$	32	\$	13,440
21020	502	MEDIAN STRIP MS-1	SY	299	\$	115	\$	34,385
68576	315, 412	SAW CUT	LF	6,000	\$	10	\$	60,000
		PAVEMENT						
16350	315	ASPHALT CONC. TYPE SM-12.5A (NEW SECTION)	TON	219	\$	115	\$	25,185
10610	315	ASPHALT CONC. TYPE IM-19.0A (NEW SECTION)	TON	273	\$	115	\$	31,395
16390	315	ASPH. CONC. BASE COURSE TY. BM-25.0A (NEW SECTION)	TON	437	\$	105	\$	45,885
10128	308, 309	AGGR. BASE MATL. TY. I NO. 21B (NEW SECTION)	TON	884	\$	40	\$	35,360
10628	515	FLEXIBLE PAVEMENT PLANNING 0" - 2"	SY	1,290	\$	6	\$	7,740
16350	315	ASPHALT CONC. TYPE SM-12.5A (OVERLAY)	TON	142	\$	100	\$	14,200
24430	508	DEMOLITION OF PAVEMENT (FLEXIBLE)	SY	52	\$	20	\$	1,040
10011	504	7" HYDRAULIC CEMENT STAMPED CONCRETE (TRUCK APRON)	SY	659	\$	155	\$	102,145
		DRAINAGE \& BAS						
NS		DRAINAGE ITEMS	LS	1	\$	300,000	\$	300,000
		EROSION AND SEDIMENT	ROL					
NS		E\&S ITEMS	LS	1	\$	30,000	\$	30,000
		TRAFFIC						
NS		SIGNING \& PAVEMENT MARKING	LS	1	\$	30,000	\$	30,000
NS		ROUNDABOUT LIGHTING	LS	1	\$	60,000	\$	60,000
		ROADSIDE DEVELOP						
NS		ROADSIDE DEVELOPMENT ITEMS	LS	1	\$	25,000	\$	25,000
NS		LANDSCAPING	LS	1	\$	60,000	\$	60,000
		MAINTENANCE OF TR						
NS	-	MOT	LS	1	\$	250,000	\$	250,000
	nated C	nstruction Cost					\$	1,373,391
	CONTING	NCY				50\%	\$	686,696
	EI					18\%	\$	341,958
	TOTAL	CONSTRUCTION					\$	2,402,044
PE \& Permitting (25\% of Construction Cost excluding CEI)							\$	515,022
Preliminary Right of Way and Easements							\$	1,250,000
Utility Easements and Relocation Cost							\$	100,000
R/W \& UTILITIES (2022)							\$	1,350,000
Environmental Mitigation (2022)							\$	-
PROJECT GRAND TOTAL (FY 2022)							\$	4,267,066

Appendix E-3B

Alternative 3B: Cost Analysis

$\begin{aligned} & \text { ITEM } \\ & \text { CODE } \end{aligned}$	SPEC	ITEM DESCRIPTION	UNITS	QUANTITY		T PRICE		TAL PRICE
00100	513	MOBILIZATION	LS	1	\$	66,160	\$	66,160
00101	105	CONSTRUCTION SURVEYING (CONSTRUCTION)	LS	1	\$	7,232	\$	7,232
00110	301	CLEARING AND GRUBBING	ACRE	0.8	\$	15,000	\$	12,000
EARTHWORK								
00120	303	REGULAR EXCAVATION	CY	1,051	\$	18	\$	18,918
00140	303, 305	BORROW EXCAVATION	CY	597	\$	23	\$	13,731
00128	ATTD	UNSUITABLE EXCAVATION	CY	105	\$	20	\$	2,100
INCIDENTALS								
12600	502	STD. COMB. CURB \& GUTTER CG-6	LF	0	\$	34	\$	-
12610	502	RADIAL COMB. CURB \& GUTTER CG-6	LF	189	\$	35	\$	6,615
12032	502	RADIAL CURB CG-3	LF	12	\$	32	\$	384
21020	502	MEDIAN STRIP MS-1	SY	32	\$	115	\$	3,680
68576	315, 412	SAW CUT	LF	3,000	\$	10	\$	30,000
PAVEMENT								
16350	315	ASPHALT CONC. TYPE SM-12.5A (NEW SECTION)	TON	139	\$	115	\$	15,985
10610	315	ASPHALT CONC. TYPE IM-19.0A (NEW SECTION)	TON	173	\$	115	\$	19,895
16390	315	ASPH. CONC. BASE COURSE TY. BM-25.0A (NEW SECTION)	TON	278	\$	105	\$	29,190
10128	308, 309	AGGR. BASE MATL. TY. I NO. 21B (NEW SECTION)	TON	561	\$	40	\$	22,440
10628	515	FLEXIBLE PAVEMENT PLANNING 0" - 2"	SY	927	\$	6	\$	5,562
16350	315	ASPHALT CONC. TYPE SM-12.5A (OVERLAY)	TON	102	\$	100	\$	10,200
24430	508	DEMOLITION OF PAVEMENT (FLEXIBLE)	SY	0	\$	20	\$	-
10011	504	7" HYDRAULIC CEMENT STAMPED CONCRETE (TRUCK APRON)	SY	0	\$	155	\$	-
DRAINAGE \& BASINS								
NS		DRAINAGE ITEMS	LS	1	\$	150,000	\$	150,000
EROSION AND SEDIMENT CONTROL								
NS		E\&S ITEMS	LS	1	\$	15,000	\$	15,000
TRAFFIC								
NS		SIGNING \& PAVEMENT MARKING	LS	1	\$	45,000	\$	45,000
NS		ROUNDABOUT LIGHTING	LS	1	\$	60,000	\$	60,000
ROADSIDE DEVELOPMENT								
NS		ROADSIDE DEVELOPMENT ITEMS	LS	1	\$	12,500	\$	12,500
MAINTENANCE OF TRAFFIC								
NS	-	MOT	LS	1	\$	250,000	\$	250,000
Estimated Construction Cost							\$	796,592
CONTINGENCY						50\%	\$	398,296
CEI						18\%	\$	196,262
TOTAL CONSTRUCTION							\$	1,391,150
PE \& Permitting (25\% of Construction Cost excluding CEI)							\$	298,722
Preliminary Right of Way and Easements							\$	640,272
Utility Easements and Relocation Cost							\$	100,000
R/W \& UTILITIES (2022)							\$	740,272
Environmental Mitigation (2022)							\$	-
PROJECT GRAND TOTAL (FY 2022)							\$	2,430,144

Appendix F

Traffic Analysis

Appendix F-1

2021 Existing Conditions AM Peak

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*	「		\$			\ddagger	
Traffic Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Future Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Conflicting Peds, \#/hr	0	0	0	0	0	0	2	0	3	3	0	2
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	100	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, \%	0	1	0	3	3	0	0	0	5	0	0	8
Mvmt Flow	16	569	42	42	148	10	34	1	77	55	8	14

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	WB	NB	SB
Directions Served	LTR	LT	LTR	LTR
Maximum Queue (ft)	39	47	83	62
Average Queue (ft)	3	10	33	21
95th Queue (ft)	17	31	64	43
Link Distance (ft)	906	1105	1198	748
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (\%)				
Queuing Penalty (veh)				

Network Summary

Network wide Queuing Penalty: 0

Appendix F-2

2021 Existing Conditions PM Peak

Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*	「		\$			\ddagger	
Traffic Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Future Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Conflicting Peds, \#/hr	0	0	0	0	0	0	2	0	4	2	0	4
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	100	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, \%	8	1	6	5	1	0	0	0	7	0	0	0
Mvmt Flow	13	268	35	60	458	42	34	6	58	26	4	23

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	WB	NB	SB
Directions Served	LTR	LT	LTR	LTR
Maximum Queue (ft)	57	83	88	42
Average Queue (ft)	5	15	32	18
95th Queue (ft)	31	53	66	37
Link Distance (ft)	906	1105	1198	748
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		0		
Storage Blk Time (\%)		0		
Queuing Penalty (veh)		0		

Network Summary

Network wide Queuing Penalty: 0

Appendix F-3

Alternative 1: TWSC w/ Turn Lanes Conditions AM Peak

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	F		${ }^{1}$	\uparrow			\uparrow	F		$\$$	
Traffic Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Future Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Conflicting Peds, \#/hr	0	0	0	0	0	0	2	0	3	3	0	2
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	125	-	-	125	-	-	-	-	125	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	86	86	86	86	86	86	86	86	86	86	86	86
Heavy Vehicles, \%	0	1	0	3	3	0	0	0	5	0	0	8
Mvmt Flow	16	569	42	42	148	10	34	1	77	55	8	14

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	EB	WB	WB	NB	NB	SB
Directions Served	L	TR	L	TR	LT	R	LTR
Maximum Queue (ft)	18	9	39	6	54	66	49
Average Queue (ft)	1	0	13	0	16	20	23
95th Queue (ft)	8	5	36	4	38	45	45
Link Distance (ft)		905		1109	1192		755
Upstream Blk Time (\%)							
Queuing Penalty (veh)			125			125	
Storage Bay Dist (ft)	125		125				

Network Summary

Network wide Queuing Penalty: 0

Appendix F-4

Alternative 1: TWSC w/ Turn Lanes Conditions PM Peak

Intersection												
Int Delay, s/veh	3.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	F		${ }^{7}$	\dagger			\uparrow	7		$\$$	
Traffic Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Future Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Conflicting Peds, \#/hr	0	0	0	0	0	0	2	0	4	2	0	4
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	125	-	-	125	-	-	-	-	125	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97
Heavy Vehicles, \%	8	1	6	5	1	0	0	0	7	0	0	0
Mvmt Flow	13	268	35	60	458	42	34	6	58	26	4	23

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	EB	WB	WB	NB	NB	SB
Directions Served	L	TR	L	TR	LT	R	LTR
Maximum Queue (ft)	32	17	44	43	42	53	42
Average Queue (ft)	5	1	13	3	19	19	20
95th Queue (ft)	21	9	38	20	39	44	37
Link Distance (ft)		905		1109	1192		755
Upstream Blk Time (\%)							
Queuing Penalty (veh)						125	
Storage Bay Dist (ft)	125		125				
Storage Blk Time (\%)							

Network Summary

Network wide Queuing Penalty: 0

Appendix F-5

Alternative 2: Traffic Signal Conditions AM Peak

HCM 6th Signalized Intersection Summary Earlysville Rd with Reas Ford Rd Intersection Study 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

	4	\rightarrow		7		4	4	\dagger	p	V	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{7}$	\uparrow			\uparrow	「		\&	
Traffic Volume (veh/h)	14	489	36	36	127	9	29	1	66	47	7	12
Future Volume (veh/h)	14	489	36	36	127	9	29	1	66	47	7	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		0.98	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1885	1900	1856	1856	1900	1900	1900	1826	1900	1900	1781
Adj Flow Rate, veh/h	16	569	42	42	148	10	34	1	77	55	8	14
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Percent Heavy Veh, \%	0	1	0	3	3	0	0	0	5	0	0	8
Cap, veh/h	745	765	56	405	804	54	368	8	262	267	38	32
Arrive On Green	0.02	0.44	0.44	0.05	0.47	0.47	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1810	1731	128	1767	1716	116	1494	67	1529	869	308	262
Grp Volume(v), veh/h	16	0	611	42	0	158	35	0	77	77	0	0
Grp Sat Flow(s),veh/h/ln	1810	0	1859	1767	0	1832	1561	0	1529	1439	0	0
Q Serve(g_s), s	0.2	0.0	10.6	0.5	0.0	1.9	0.0	0.0	1.7	1.2	0.0	0.0
Cycle Q Clear(g_c), s	0.2	0.0	10.6	0.5	0.0	1.9	0.7	0.0	1.7	1.9	0.0	0.0
Prop In Lane	1.00		0.07	1.00		0.06	0.97		1.00	0.71		0.18
Lane Grp Cap(c), veh/h	745	0	822	405	0	858	376	0	262	337	0	0
V/C Ratio(X)	0.02	0.00	0.74	0.10	0.00	0.18	0.09	0.00	0.29	0.23	0.00	0.00
Avail Cap(c_a), veh/h	942	0	2400	550	0	2366	930	0	863	893	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.7	0.0	9.0	6.7	0.0	6.0	15.2	0.0	14.0	15.6	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	1.4	0.1	0.0	0.1	0.1	0.0	0.6	0.3	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.0	0.0	3.0	0.1	0.0	0.5	0.2	0.0	0.5	0.5	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.7	0.0	10.3	6.8	0.0	6.1	15.3	0.0	14.6	16.0	0.0	0.0
LnGrp LOS	A	A	B	A	A	A	B	A	B	B	A	A
Approach Vol, veh/h		627			200			112			77	
Approach Delay, s/veh		10.2			6.2			14.8			16.0	
Approach LOS		B			A			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.8	22.1		9.8	5.8	23.1		9.8				
Change Period (Y+Rc), s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting (Gmax), s	5.0	50.0		20.0	5.0	50.0		20.0				
Max Q Clear Time (g_c+l1), s	2.5	12.6		3.7	2.2	3.9		3.9				
Green Ext Time (p_c), s	0.0	4.5		0.3	0.0	0.9		0.3				
Intersection Summary												
HCM 6th Ctrl Delay			10.4									
HCM 6th LOS			B									

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	EB	WB	WB	NB	NB	SB
Directions Served	L	TR	L	TR	LT	R	LTR
Maximum Queue (ft)	25	179	54	106	54	68	64
Average Queue (ft)	5	73	16	25	15	20	25
95th Queue (ft)	22	140	40	71	41	49	53
Link Distance (ft)		905		1109	1192		755
Upstream Blk Time (\%)							
Queuing Penalty (veh)						125	
Storage Bay Dist (ft)	125		125				
Storage Blk Time (\%)		1		0			

Network Summary

Network wide Queuing Penalty: 0

Appendix F-6

Alternative 2: Traffic Signal
 Conditions
 PM Peak

HCM 6th Signalized Intersection Summary Earlysville Rd with Reas Ford Rd Intersection Study 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

	4	\rightarrow		7		4	4	\dagger	p	V	$\frac{1}{1}$	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1 /}$	\uparrow		${ }^{7}$	\uparrow			\uparrow	「		\&	
Traffic Volume (veh/h)	13	260	34	58	444	41	33	6	56	25	4	22
Future Volume (veh/h)	13	260	34	58	444	41	33	6	56	25	4	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		0.98	0.99		0.99	0.99		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1781	1885	1811	1826	1885	1900	1900	1900	1796	1900	1900	1900
Adj Flow Rate, veh/h	13	268	35	60	458	42	34	6	58	26	4	23
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, \%	8	1	6	5	1	0	0	0	7	0	0	0
Cap, veh/h	394	564	74	560	666	61	356	47	293	236	41	86
Arrive On Green	0.02	0.35	0.35	0.06	0.39	0.39	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h	1697	1633	213	1739	1697	156	1167	361	1502	547	315	661
Grp Volume(v), veh/h	13	0	303	60	0	500	40	0	58	53	0	0
Grp Sat Flow(s),veh/h/ln	1697	0	1847	1739	0	1853	1529	0	1502	1523	0	0
Q Serve(g_s), s	0.2	0.0	4.2	0.7	0.0	7.3	0.0	0.0	1.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.2	0.0	4.2	0.7	0.0	7.3	0.6	0.0	1.1	0.9	0.0	0.0
Prop In Lane	1.00		0.12	1.00		0.08	0.85		1.00	0.49		0.43
Lane Grp Cap(c), veh/h	394	0	638	560	0	727	403	0	293	363	0	0
V/C Ratio(X)	0.03	0.00	0.48	0.11	0.00	0.69	0.10	0.00	0.20	0.15	0.00	0.00
Avail Cap(c_a), veh/h	677	0	2663	822	0	2729	1146	0	1066	1113	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(l)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	7.2	0.0	8.4	6.2	0.0	8.2	12.6	0.0	11.0	12.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.6	0.1	0.0	1.2	0.1	0.0	0.3	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/In	0.0	0.0	1.1	0.1	0.0	1.9	0.2	0.0	0.3	0.3	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	7.2	0.0	8.9	6.3	0.0	9.4	12.7	0.0	11.3	12.9	0.0	0.0
LnGrp LOS	A	A	A	A	A	A	B	A	B	B	A	A
Approach Vol, veh/h		316			560			98			53	
Approach Delay, s/veh		8.8			9.1			11.9			12.9	
Approach LOS		A			A			B			B	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.1	16.3		9.2	5.6	17.8		9.2				
Change Period (Y+Rc), s	5.0	5.0		5.0	5.0	5.0		5.0				
Max Green Setting (Gmax), s	7.0	47.0		21.0	6.0	48.0		21.0				
Max Q Clear Time (g_c+l1), s	2.7	6.2		3.1	2.2	9.3		2.9				
Green Ext Time (p_c), s	0.0	1.9		0.3	0.0	3.5		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			9.5									
HCM 6th LOS			A									

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	EB	WB	WB	NB	NB	SB
Directions Served	L	TR	L	TR	LT	R	LTR
Maximum Queue (ft)	37	126	55	162	59	52	39
Average Queue (ft)	7	51	21	64	20	17	17
95th Queue (ft)	27	98	46	129	47	39	36
Link Distance (ft)		905		1109	1192		755
Upstream Blk Time (\%)							
Queuing Penalty (veh)						125	
Storage Bay Dist (ft)	125		125				
Storage Blk Time (\%)		0		1			

Network Summary

Network wide Queuing Penalty: 0

Appendix F-7

Alternative 3: Roundabout Conditions AM Peak

LANE SUMMARY

© Site: 1 [2021 AM Peak (Site Folder: Earlysville Rd with Reas

Ford Rd)]
Proposed Single-Lane Roundabout
Site Category: Proposed Design 1
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service		K OF E Dist] ft	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Reas Ford Road													
Lane $1^{\text {d }}$	112	3.4	729	0.153	100	6.6	LOS A	0.9	24.1	Full	1600	0.0	0.0
Approach	112	3.4		0.153		6.6	LOS A	0.9	24.1				
East: Earlysville Road													
Lane $1^{\text {d }}$	200	2.8	1267	0.158	100	4.2	LOS A	1.0	25.0	Full	1000	0.0	0.0
Approach	200	2.8		0.158		4.2	LOS A	1.0	25.0				
North: Earlysville Forest Drive													
Lane $1^{\text {d }}$	77	1.5	1098	0.070	100	3.9	LOS A	0.4	9.3	Full	1600	0.0	0.0
Approach	77	1.5		0.070		3.9	LOS A	0.4	9.3				
West: Earlysville Road													
Lane $1^{\text {d }}$	627	0.9	1230	0.509	100	8.5	LOS A	4.4	109.7	Full	1600	0.0	0.0
Approach	627	0.9		0.509		8.5	LOS A	4.4	109.7				
Intersection	1015	1.6		0.509		7.1	LOS A	4.4	109.7				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)

South: Reas Ford Road										
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Prob SL Ov. \%	$\begin{array}{r} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{array}$
Lane 1	34	1	77	112	3.4	729	0.153	100	NA	NA
Approach	34	1	77	112	3.4		0.153			
East: Earlysville Road										
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Prob. SL Ov. \%	$\begin{array}{r} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{array}$
Lane 1	42	148	10	200	2.8	1267	0.158	100	NA	NA

Approach	42	148	10	200	2.8	0.158			
North: Earlysville Forest Drive									
Mov. From N To Exit:	L2 E	T1	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	55	8	14	77	1.5	1098	0.070	100 NA	NA
Approach	55	8	14	77	1.5		0.070		
West: Earlysville Road									
Mov. From W To Exit	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{array}{cr} \text { Lane } & \text { Prob. } \\ \text { Util. SL Ov. } \\ \% & \% \end{array}$	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	16	569	42	627	0.9	1230	0.509	100 NA	NA
Approach	16	569	42	627	0.9		0.509		
Total \%HV Deg.Satn (v/c)									
Intersection	1015	1.6		0.509					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis						
$\begin{array}{r} \text { Exit } \\ \text { Lane } \\ \text { Number } \end{array}$	Short Percent Opposing Lane Opng in Flow Rate Length Lane \% veh/h pcu/h	Critical Gap	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Min. Satn Delay v/c sec	Merge Delay
South Exit: Reas Ford Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
East Exit: Earlysville Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
North Exit: Earlysville Forest Drive Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
West Exit: Earlysville Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: A MORTON THOMAS AND ASSOCIATES INC | Licence: PLUS / 1PC | Processed: Wednesday, October 6, 2021 1:39:10 PM
Project: C:IUserslcglaserlDesktop\Earlysville Rd Intersection Study\Sidra Analysis\Model\Int 12021 Proposed Configuration.sip9

Appendix F-8

Alternative 3: Roundabout Conditions PM Peak

LANE SUMMARY

© Site: 1 [2021 PM Peak (Site Folder: Earlysville Rd with Reas

Ford Rd)]
Proposed Single-Lane Roundabout
Site Category: Proposed Design 1
Roundabout

Lane Use and Performance													
		$\begin{aligned} & \text { ND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Aver. Delay sec	Level of Service	95\% [Veh	$\begin{gathered} \mathrm{K} \text { OF } \\ \mathrm{JE} \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Lane Config	Lane Length ft	Cap. Adj. \%	Prob. Block. \%
South: Reas Ford Road													
Lane $1^{\text {d }}$	98	4.1	987	0.099	100	4.6	LOS A	0.5	14.1	Full	1600	0.0	0.0
Approach	98	4.1		0.099		4.6	LOS A	0.5	14.1				
East: Earlysville Road													
Lane $1^{\text {d }}$	560	1.4	1285	0.436	100	7.1	LOS A	3.6	91.1	Full	1000	0.0	0.0
Approach	560	1.4		0.436		7.1	LOS A	3.6	91.1				
North: Earlysville Forest Drive													
Lane $1^{\text {d }}$	53	0.0	848	0.062	100	4.9	LOS A	0.4	8.8	Full	1600	0.0	0.0
Approach	53	0.0		0.062		4.9	LOS A	0.4	8.8				
West: Earlysville Road													
Lane $1^{\text {d }}$	316	1.9	1235	0.256	100	5.2	LOS A	1.6	40.9	Full	1600	0.0	0.0
Approach	316	1.9		0.256		5.2	LOS A	1.6	40.9				
Intersection	1027	1.7		0.436		6.2	LOS A	3.6	91.1				

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane.
LOS F will result if $v / c>1$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: HCM Delay Formula (Geometric Delay is not included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.
d Dominant lane on roundabout approach

Approach Lane Flows (veh/h)

South: Reas Ford Road										
Mov. From S To Exit:	L2 W	T1 N	R2 E	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Prob SL Ov. \%	$\begin{array}{r} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{array}$
Lane 1	34	6	58	98	4.1	987	0.099	100	NA	NA
Approach	34	6	58	98	4.1		0.099			
East: Earlysville Road										
Mov. From E To Exit:	L2 S	T1 W	R2 N	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Util. \%	Prob. SL Ov. \%	$\begin{array}{r} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{array}$
Lane 1	60	458	42	560	1.4	1285	0.436	100	NA	NA

Approach	60	458	42	560	1.4	0.436			
North: Earlysville Forest Drive									
Mov. From N To Exit:	L2 E	T1	R2 W	Total	\%HV	Cap. veh/h	Deg. Satn v/c	Lane Prob. Util. SL Ov. \% \%	Ov. Lane No.
Lane 1	26	4	23	53	0.0	848	0.062	100 NA	NA
Approach	26	4	23	53	0.0		0.062		
West: Earlysville Road									
Mov. From W To Exit	L2 N	T1 E	R2 S	Total	\%HV	Cap. veh/h	Deg. Satn v/c	$\begin{array}{cr} \text { Lane } & \text { Prob. } \\ \text { Util. SL Ov. } \\ \% & \% \end{array}$	$\begin{gathered} \text { Ov. } \\ \text { Lane } \\ \text { No. } \end{gathered}$
Lane 1	13	268	35	316	1.9	1235	0.256	100 NA	NA
Approach	13	268	35	316	1.9		0.256		
Total \%HV Deg.Satn (v/c)									
Intersection	1027	1.7		0.436					

Lane flow rates given in this report are based on the arrival flow rates subject to upstream capacity constraint where applicable.

Merge Analysis						
$\begin{array}{r} \text { Exit } \\ \text { Lane } \\ \text { Number } \end{array}$	Short Percent Opposing Lane Opng in Flow Rate Length Lane \% veh/h pcu/h	Critical Gap	Follow-up Lane Headway Flow Rate sec veh/h	Capacity veh/h	Deg. Min. Satn Delay v/c sec	Merge Delay
South Exit: Reas Ford Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
East Exit: Earlysville Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
North Exit: Earlysville Forest Drive Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					
West Exit: Earlysville Road Merge Type: Not Applied						
Full Length Lane 1	Merge Analysis not applied.					

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: A MORTON THOMAS AND ASSOCIATES INC | Licence: PLUS / 1PC | Processed: Wednesday, October 6, 2021 1:39:11 PM
Project: C:IUserslcglaserlDesktop\Earlysville Rd Intersection Study\Sidra Analysis\Model\Int 12021 Proposed Configuration.sip9

Appendix F-9

Alternative 4: AWSC Conditions AM Peak

Intersection	
Intersection Delay, s/veh	22
Intersection LOS	C

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow	「		¢			\uparrow	
Traffic Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Future Vol, veh/h	14	489	36	36	127	9	29	1	66	47	7	12
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Heavy Vehicles, \%	0	1	0	3	3	0	0	0	5	0	0	8
Mvmt Flow	16	569	42	42	148	10	34	1	77	55	8	14
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	29			11.1			10.1			10.3		
HCM LOS	D			B			B			B		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	30%	3%	22%	0%	71%
Vol Thru, \%	1%	91%	78%	0%	11%
Vol Right, \%	69%	7%	0%	100%	18%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	96	539	163	9	66
LT Vol	29	14	36	0	47
Through Vol	1	489	127	0	7
RT Vol	66	36	0	9	12
Lane Flow Rate	112	627	190	10	77
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.18	0.85	0.31	0.015	0.133
Departure Headway (Hd)	5.793	4.882	5.886	5.064	6.258
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	617	746	610	706	571
Service Time	3.846	2.882	3.621	2.799	4.316
HCM Lane V/C Ratio	0.182	0.84	0.311	0.014	0.135
HCM Control Delay	10.1	29	11.3	7.9	10.3
HCM Lane LOS	B	D	B	A	B
HCM 95th-tile Q	0.7	9.9	1.3	0	0.5

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LTR	LTR
Maximum Queue (ft)	190	74	28	60	46
Average Queue (ft)	94	33	8	28	18
95th Queue (ft)	163	58	27	50	35
Link Distance (ft)	906	1105		1198	748
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		0	100		
Storage Blk Time (\%)		0			
Queuing Penalty (veh)		0			

Network Summary

Network wide Queuing Penalty: 0

Appendix F-10

Alternative 4: AWSC Conditions PM Peak

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 18.5 |
| Intersection LOS | C |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow	「		*			\&	
Traffic Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Future Vol, veh/h	13	260	34	58	444	41	33	6	56	25	4	22
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles, \%	8	1	6	5	1	0	0	0	7	0	0	0
Mvmt Flow	13	268	35	60	458	42	34	6	58	26	4	23
Number of Lanes	0	1	0	0	1	1	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			1		
HCM Control Delay	12.9			23.9			10.1			9.8		
HCM LOS	B			C			B			A		

Lane	NBLn1	EBLn1	WBLn1	WBLn2	SBLn1
Vol Left, \%	35%	4%	12%	0%	49%
Vol Thru, \%	6%	85%	88%	0%	8%
Vol Right, \%	59%	11%	0%	100%	43%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	95	307	502	41	51
LT Vol	33	13	58	0	25
Through Vol	6	260	444	0	4
RT Vol	56	34	0	41	22
Lane Flow Rate	98	316	518	42	53
Geometry Grp	2	5	7	7	2
Degree of Util (X)	0.161	0.465	0.786	0.054	0.09
Departure Headway (Hd)	5.929	5.292	5.466	4.633	6.174
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	604	680	668	778	579
Service Time	3.973	3.32	3.166	2.333	4.223
HCM Lane VIC Ratio	0.162	0.465	0.775	0.054	0.092
HCM Control Delay	10.1	12.9	25.2	7.6	9.8
HCM Lane LOS	B	B	D	A	A
HCM 95th-tile Q	0.6	2.5	7.7	0.2	0.3

Queuing and Blocking Report

Intersection: 1: Reas Ford Rd/Earlysville Forest Drive \& Earlysville Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LTR	LTR
Maximum Queue (ft)	92	172	77	60	33
Average Queue (ft)	53	72	22	27	15
95th Queue (ft)	77	129	57	49	28
Link Distance (ft)	906	1105		1198	748
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		3	100		
Storage Blk Time (\%)		1			
Queuing Penalty (veh)		1			

Network Summary

Network wide Queuing Penalty: 1

Appendix G

Auxiliary Lane Analysis

Appendix G-1

Earlysville Road Northbound 2021 Existing Conditions

Earlysville Road Northbound - 2021 AM Peak

FIGURE 3-6 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

FIGURE 3-7 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

Earlysville Road Northbound - 2021 AM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^0]Earlysville Road Northbound - 2021 PM Peak
WARRANT FOR LEFT-TURN STORAGE LANES ON TWO-LANE HIGHWAY

FIGURE 3-4 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

FIGURE 3-5 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

Earlysville Road Northbound - 2021 PM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^1]
Appendix G-2

Earlysville Road Southbound 2021 Existing Conditions

Earlysville Road Southbound - 2021 AM Peak
WARRANT FOR LEFT-TURN STORAGE LANES ON TWO-LANE HIGHWAY

FIGURE 3-4 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

FIGURE 3-5 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

Earlysville Road Southbound - 2021 AM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^2]Earlysville Road Southbound - 2021 PM Peak
WARRANT FOR LEFT-TURN STORAGE LANES ON TWO-LANE HIGHWAY

FIGURE 3-4 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

FIGURE 3-5 WARRANT FOR LEFT TURN STORAGE LANES ON TWO LANE HIGHWAY

Earlysville Road Southbound - 2021 PM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^3]
Appendix G-3

Reas Ford Road Eastbound 2021 Existing Conditions

Reas Ford Road Eastbound - 2021 AM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$K=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^4]

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^5]
Appendix G-4

Earlysville Forest Drive Westbound 2021 Existing Conditions

Earlysville Forest Drive Westbound - 2021 AM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$K=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^6]Earlysville Forest Drive Westbound - 2021 PM Peak

FIGURE 3-26 WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)

Appropriate Radius required at all Intersections and Entrances (Commercial or Private).

LEGEND

PHV - Peak Hour Volume (also Design Hourly Volume equivalent)

Adjustment for Right Turns

For posted speeds at or under $45 \mathrm{mph}, \mathrm{PHV}$ right turns >40, and PHV total < 300.
Adjusted right turns = PHV Right Turns - 20
If PHV is not known use formula: $\mathrm{PHV}=\mathrm{ADT} \times \mathrm{K} \times \mathrm{D}$
$\mathrm{K}=$ the percent of AADT occurring in the peak hour
$D=$ the percent of traffic in the peak direction of flow
Note: An average of 11% for K x D will suffice.
When right turn facilities are warranted, see Figure 3-1 for design criteria.*

[^7]
Appendix H

CMF Data

VDOT

VIRGINIA STATE PREFERRED CMF LIST

VIRGINIA STATE PREFERRED CMF LIST

Table of Contents
Introduction 1
What is a CMF? 1
How to Use This Document. 1
Can't Find Your Countermeasure? 3
Preferred CMF List Key. 3
Virginia State Preferred CMF List. 4
CMFunction Equations. 16
References 18

Introduction

A crash modification factor (CMF) is a useful tool for estimating changes in safety performance that can be expected when implementing a countermeasure. Developed using various forms of statistical analyses, they provide average changes in crash frequency, and sometimes severity, which are commonly observed when a treatment is installed.

Almost all CMFs can be found in the Crash Modification Factors Clearinghouse, a web-based repository of more than 6,000 CMFs covering hundreds of treatments. Often, a search for a countermeasure on the website will return many CMFs for a single treatment. As a result, this document was developed.

The Virginia State Preferred CMF List is a condensed directory with common CMFs relative to Virginia. The State preferred list contains CMFs with high quality ratings and includes the applicable crash type, area type, severity, service life, functional class, and site description. These CMFs will be used to support Virginia's HSIP program as well as other, broader applications.

CMF Example - Convert At-Grade Intersection to Interchange

The study intersection has experienced the following 15 crashes in one year:

Severity	K	A	BC	O
Crashes	1	2	5	7

Engineers want to convert this intersection to an interchange. Find CMFs in document
(as shown in Figure A-1) and calculate how many crashes of each severity can be reduced.
In the HSIP application, use all applicable CMFs as shown below:

- $K_{\text {reauced }}=1$ crash per year * $(1-0.58)=0.42$ crashes per year
- $A_{\text {reduced }}=2$ crashes per year * $(1-0.43)=1.14$ crashes per year
- $B C_{\text {reduced }}=5$ crashes per year * $(1-0.43)=2.85$ crashes per year
- $O_{\text {reduced }}=7$ crashes per year * $(1-0.64)=2.52$ crashes per year

WHAT IS A CMF?

Mathematically, a CMF is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site. For example, a countermeasure expected to reduce the number of injury crashes by 23 percent will have a CMF of 0.77 ($1-[23 / 100]=0.77)$. On the other hand, if the treatment is expected to increase the number of property damage crashes by 23 percent, the CMF will be $=1-(-23 / 100)=1.23$.

To estimate future expected crash frequency with the treatment, the CMFs are applied to expected crash frequency assuming no changes. For example, a stop-controlled intersection is expected to experience five crashes per year. A treatment is installed with a CMF of 0.77 , so the expected crash frequency with the installation would be $5 * 0.77=3.85$, a reduction of 1.15 crashes per year.

HOW TO USE THIS DOCUMENT

This document consists of three tables spread over multiple pages which describe and provide supporting documentation for the CMFs. Descriptions of each table are provided later in this section. CMFs should be selected based on applicability, where the characteristics associated with the CMF closely match the characteristics of the scenario at hand. For example, CMFs often vary by crash type and crash severity. CMFs may also be specific to urban or rural areas and should be applied to situations that match.

As an example, consider the CMF "Convert At-Grade Intersection to Interchange" shown in Figure A-1. The location of interest is 4-leg at-grade intersection, and a new interchange was suggested by a safety assessment team to help mitigate crashes at this intersection. Use the CMF by crash severity to determine the expected number of crashes for the applicable severity.

Figure A-1 Convert Intersection to Interchange CMF Information

COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
Convert At-Grade Intersection to Interchange	ALL	-	0.58	0.43	0.43	0.64	20	-	4-Leg Intersection	At-Grade Intersection	$\begin{aligned} & \text { CMF ID: } 459, \\ & 460,461 \end{aligned}$

Table 1: Virginia State Preferred CMF List

Table 1 provides CMFs by crash type and severity for the identified countermeasures. The countermeasures are separated into four categories: bike/ped, interchanges, intersections, and segments. For each countermeasure, the following information is provided:

- Countermeasure name;
- Applicable crash type, using codes defined within the key;
- Applicable area type, using codes defined within the key;
- CMFs for four severity categories;
- Fatal Crash (K);
- Suspected Serious Injury Crash (A)
- Suspected Minor Injury and Possible Injury Crashes (BC); and
- Property Damage Only (PDO) Crash (O).
- The anticipated service life for the treatment;
- The applicable functional class;
- A general site description;
- The designated prior condition for the countermeasure; and
- References for the CMF(s).

When applying these CMFs, analysts should be careful to apply the CMF only to the designated crash types and severities. However, these crash types should not limit consideration of the countermeasure's usage. Just because a CMF is not available for the specific conditions does not mean the countermeasure is not useful in that context, it just might not have been researched yet.

Countermeasures with ** listed for a CMF indicate this CMF is defined using an equation, which can be found in Table 2.

Table 2: CMFunction Equations

Some CMFs may require the use of an equation, which can be called Crash Modification Functions (CMFunctions), and the equations are provided in Table 2. For some of the more complex CMFunctions, an online calculator has been provided to assist users in determining the expected number of crashes. This calculator can be found on VDOT's HSIP website.

The equations are functions of existing and proposed conditions, with the units varying based on the CMF; the units can be verified in the Units column. In all cases, the existing condition is represented as the variable X and the proposed condition is represented as the variable Y. For equations that are not on the website, simply enter the existing and proposed conditions into the appropriate equation using the designated units. The resulting value from the equation is the CMF.

The countermeasures in Table 2 are divided into three categories: interchanges, intersections, and segments. Data provided for the countermeasures in Table 2 include:

- Countermeasure name.
- CMFunctions for four severity categories:
- Fatal Crash (K);
- Suspected Serious Injury Crash (A);
- Suspected Minor Injury and Possible Injury Crashes (BC); and
- Property Damage Only (PDO) Crash (O).
- Units for the existing and proposed conditions.

The resulting CMFs from the equation should be cross-referenced with Table 1 to ensure the CMF is being applied to the appropriate crash types.

Table 3: References

Specific references for the selected CMFs are provided in Table 3. The countermeasures in Table 3 are divided into four categories: bike/ped, interchanges, intersections, and segments. For each countermeasure, four pieces of data are provided:

- Countermeasure name;
- The shorthand reference from Table 1;
- The hyperlink for the first reference; and
- The hyperlink for the second reference, when applicable.

If there are questions about the study design, applicability, and/or prior conditions of a CMF, the analyst can refer to the linked documents, which can offer some clarification from the authors of the CMF study.

CAN'T FIND YOUR COUNTERMEASURE?

The list below contains an exhaustive list of countermeasures used in Virginia. If the user is proposing a countermeasure that cannot be located on this list, they are to identify relevant research supporting an estimated CMF value and submit this documentation to VDOT HSIP staff for review and approval.

PREFERRED CMF LIST KEY

Crash Type

VP Vehicle-Pedestrian
VT Vehicle-Train
SV Single Vehicle
CM Cross-Median
F Frontal
0 Opposing Direction Sideswipe

- Refer to the CMF Calculator on the HSIP website
Δ Refer to specific treatment.
** Refer to Equations Sheet on page 16.

Key
 Area Type

U+S Urban and Suburban
Sub Suburban

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Install Raised Pedestrian Crossing	ALL	-	0.64	0.64	0.64	0.7	20	-	Pedestrian Crossing	At-Grade Pedestrian Crossing	PED CMF Toolbox
	Prohibit Left Turns	VP	-	0.9	0.9	0.9	0.9	6	-	Intersection with Left Turns into Pedestrian Crossings	Left Turns Allowed	Ped CMF Toolbox
	Remove Parking Near Intersection	VP	-	0.7	0.7	0.7	0.7	Δ	-	Intersection with Parking on Approaches	Parking Present Near Intersection Approaches	PED CMF Toolbox
	Upgrade Crosswalk to High-Visibility	VP	-	0.52	0.52	0.52	0.52	2	-	Pedestrian Crosswalk	Standard Crosswalk Markings	CMF ID: 4658
	Widen Sidewalk at Intersection	ALL	-	1	1.12	1.12	1	20	-	Intersection with Sidewalks	Existing Sidewalk Width	CMF ID: 413
	Add Auxiliary Lane Between Entrance and Exit Ramps	ALL	-	0.77	0.77	0.77	0.79	20	Principal Arterial- Other Freeways and Expressways	Freeway Interchange Weaving Area	No Auxiliary Lane Present	$\begin{aligned} & \text { CMF ID: 7440, } \\ & 7441 \end{aligned}$
	Add Collector-Distributor Road	ALL	-	0.9	0.9	0.9	0.9	20	-	Freeway Interchange Area	No Collector-Distributor Road Present	ISATe, HSM Chapters 18 and 19
	Add Entrance Ramp to One Side of Freeway	ALL	-	-	-	-	-	20	-	Directional Freeway Segment	Freeway Segment with No Entrance Ramp	ISATe, HSM Chapters 18 and 19
	Add Exit Ramp to One Side of Freeway	ALL	-	-	A	A	-	20	-	Directional Freeway Segment	Freeway Segment with No Exit Ramp	ISATe, HSM Chapters 18 and 19
	Convert Diamond Interchange to Diverging Diamond Interchange	ALL	Sub	0.59	0.59	0.59	0.67	20	Principal Arterial Interstate	Diamond Interchange	Traditional Diamond Interchange	$\begin{aligned} & \text { CMF ID: 8258, } \\ & 8278 \end{aligned}$
	Convert Diamond Interchange to SPUI	ALL	-	0.62	0.62	0.62	0.62	20	-	Diamond Interchange	Traditional Diamond Interchange	VDOT Planning Level CMFs
	Extend Deceleration Lane Length by 100 Feet	ALL	-	0.93	0.93	0.93	0.93	20	-	Freeway Segment with Deceleration Lane	Existing Deceleration Lane Length	CMD ID: 475
	Interchange Lighting	Night Time	-	0.5	0.5	0.5	0.5	15	Principal Arterial Interstate	Freeway Interchange	No Highway Lighting Present	CMF ID: 1283
	Lengthen Acceleration Lane from X Miles to Y Miles	ALL	-	**	**	**	**	20	Principal Arterial - Interstate	Freeway Segment with Acceleration Lane	Existing Acceleration Lane of Length X Miles	$\begin{aligned} & \text { CMF ID: 5215, } \\ & 5216 \end{aligned}$
	Replace Loop Ramp with Short Direct Ramp	ALL	-	0.7	0.7	0.7	0.7	20	-	Interchange Ramp	Existing Loop Ramp	CMF ID: 480

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	$\begin{aligned} & \text { CRASH } \\ & \text { TYPE } \end{aligned}$	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Widen Ramp Lane Width from X to Y in Feet	ALL	-	**	**	**	1	20	Freeway Ramp	Freeway Ramp	Existing Ramp Lane Width of X Feet	$\begin{aligned} & \text { HSM Eqn } \\ & \text { 19-34 } \end{aligned}$
	Widen Ramp Left Shoulder	ALL	-	**	**	**	**	20	Freeway Ramp	Freeway Ramp	Existing Left-Shoulder Width of X Feet	HSM Eqn 19-36
	Widen Ramp Right Shoulder	ALL	-	**	**	**	**	20	Freeway Ramp	Freeway Ramp	Existing Right-Shoulder Width of X Feet	HSM Eqn 19-35
2은\vdots40$\frac{4}{11}$2	Install Intersection Lighting	Night Time	ALL	0.881	0.881	0.881	0.881	15	-	Intersection	No Lighting Present	CMF ID: 4462
	Increase Stopping Sight Distance on Crest Vertical Curve-Intersection Approach	ALL	Rural	0.62	0.62	0.62	0.70	20	-	Intersection Approach with Crest Vertical Curve	Crest Vertical Curve with Inadequate Sight Distance	$\begin{aligned} & \text { CMF ID: 6870, } \\ & 6871 \end{aligned}$
	Add Flashing Lights to Railroad (RR) Crossings with Signs	VT	-	0.23	0.23	0.23	0.23	10	-	RR Grade Crossing	RR Grade Crossing with Static Warning Signs	CMF ID: 487
	Add Gates to RR Crossings with Signs	VT	-	0.06	0.06	0.06	0.06	10	Minor Arterial	RR Grade Crossing	RR Grade Crossing with Static Warning Signs	CMF ID: 489
	Adaptive Signal Control	ALL	U+S	0.92	0.92	0.92	0.83	20	-	Signalized Intersection	Non-Adaptive Traffic Signal	CMF ID: 6856 6857
	Add 3-Inch Yellow Retroreflective Sheeting to Signal Backplates	ALL	Urban	0.85	0.85	0.85	0.85	6	-	Signalized Intersection	No Backplates Present	CMF ID: 1410
	Advanced Activated/ Dynamic Flasher	ALL	-	0.82	0.82	0.82	0.814	6	-	Signalized Intersection	Signalized Intersection with No Advance Warning System	$\begin{aligned} & \text { CMF ID: 4198, } \\ & 4201 \end{aligned}$
	Advanced Cross Street Name Sign	ALL	-	0.99	0.99	0.99	0.984	6	-	Signalized Intersection	Signalized Intersection with No Advanced Street Sign	$\begin{aligned} & \text { CMF ID: 2449, } \\ & 2450 \end{aligned}$
	Advanced Dilemma Zone Detection	ALL	Rural	0.918	0.887	0.887	0.918	20	-	High Speed Signalized Intersection	No Dilemma Zone Warning System	$\begin{aligned} & \text { CMF ID: 4855, } \\ & 4857 \end{aligned}$
	Change from Permissive Left-Turn to Flashing Yellow Arrow	Left Turn	Urban	0.635	0.635	0.635	0.635	20	-	Signalized Intersection	Permissive Left-Turn Phasing	CMF ID: 4175
	Change from Permitted Left-Turn to Permitted/ Protected	Left Turn	Urban	0.862	0.862	0.862	0.862	20	-	Signalized Intersection	Permissive Left-Turn Phasing	CMF ID: 4270
	Change from Permitted Left-Turn to Protected on Major Approach	Angle	Urban	0.01	0.01	0.01	0.01	20	-	Signalized Intersection	Permissive Left-Turn Phasing on a Major Approach	CMF ID: 335
	Change from Permitted/ Protected Left-Turn to Protected on Major Approach	Angle	Urban	0.01	0.01	0.01	0.01	20	-	Signalized Intersection	Protected/Permissive or Vice-Versa Left-Turn Phasing on a Major Approach	CMF ID: 339

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Change from Permitted/ Protected Left-Turn to Protected on Minor Approach	Angle	Urban	0.04	0.04	0.04	0.04	20	-	Signalized Intersection	Protected/Permissive or Vice-Versa Left-Turn Phasing on a Minor Approach	CMF ID: 337
	Change from Pretimed Signal to Actuated Signal	ALL	-	0.8	0.8	0.8	0.8	20	-	Signalized Intersection	Pretimed Signal Control	NCDOT CRF List 1.6
	Change from Protected Left-Turn to Flashing Yellow Arrow	Left Turn	Urban	2.242	2.242	2.242	2.242	20	-	Signalized Intersection	Protected Left-Turn Phasing	CMF ID: 4173
	Change from Protected/ Permissive Left-Turn to Flashing Yellow Arrow	Left Turn	Urban	0.806	0.806	0.806	0.806	20	-	Signalized Intersection	Protected/Permissive LeftTurn Phasing	CMF ID: 4177
	Change Number of Approaches with Left-Turn Lanes from X Approaches to Y Approaches	ALL	ALL	**	**	**	**	20	-	Signalized Intersection	Left-Turn Lanes on X Number of Approaches	HSM
	Change Number of Approaches with Prohibited Right Turn on Red from X Approaches to Y Approaches	ALL	-	**	**	**	**	20	-	Signalized Intersection	Right Turn on Red Permitted on X Number of Approaches	CMF ID: 5194
	Change Number of Approaches with Right-Turn Lanes from X Approaches to Y Approaches	ALL	-	**	**	**	**	20	-	Signalized Intersection	Right-Turn Lanes on X Number of Approaches	HSM Table $10-14,12-26$
	Change Number of Cycles per Hour from X Cycles per Hour to Y Cycles per Hour	Rear End	U+S	**	**	**	**	20	Arterial	Signalized Intersection	X Cycles per Hour	CMF ID: 3072
	Channelize Right Turn	ALL	-	0.65	0.65	0.65	1	20	-	Signalized Intersection	No Right-Turn Channelization	FHWA CMF Desktop Reference Guide
	Closed Loop Signal System	ALL	-	0.85	0.85	0.85	0.85	20	-	Signalized Intersection	Signal System that is Not Closed Loop	NCDOT CRF List 1.7
	Convert from PedestalMounted Traffic Signal to Mast Arm-Mounted Traffic Signal	ALL	Urban	0.56	0.56	0.56	0.49	20	-	Signalized Intersection	Pedestal-Mounted Signal	$\begin{aligned} & \text { CMF ID: 1424, } \\ & 1425 \end{aligned}$

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Intersection of Rural, Multilane Highway	ALL	Rural	**	**	**	**	20	-	Stop-Controlled Intersection - Rural Multilane Highway	Right-Turn Lanes on X Number of Approaches	HSM Table $11-23$
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Intersection of Rural, Two-Lane Roads	ALL	Rural	**	**	**	**	20	-	Stop-Controlled Intersection - Rural Two-Lane Road	Right-Turn Lanes on X Number of Approaches	HSM Table $10-14$
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Urban or Suburban Arterial Intersection	ALL	U+S	**	**	**	**	20	-	Stop-Controlled Intersection - Urban and Suburban Arterial	Right-Turn Lanes on X Number of Approaches	HSM Table $12-26$
	High-Friction Surface Treatment on Approach	ALL	-	0.799	0.799	0.799	0.799	10	-	Stop-Controlled Intersection Approach	Standard Pavement on Intersection Approach	CMF ID: 2259
	Increase Intersection Sight Distance from X Feet of Available Sight Distance to Y Feet	Angle Left Turn	-	**	**	**	**	10	-	Stop-Controlled Intersection Approach	Intersection Sight Distance of X Feet	NCHRP 17-59, Report 875
	Intersection Collision Warning System	ALL	-	0.742	0.742	0.742	0.704	6	-	Stop-Controlled Intersection	No Collision Warning System Present	$\begin{aligned} & \text { CMF ID: 8474, } \\ & 8475 \end{aligned}$
	Reduce Intersection Skew from X to Y-3-Leg Intersection	ALL	Rural	**	**	**	**	20	-	3-Leg Stop-Controlled Intersection	Intersection Skew Angle of X Degrees	HSM Equation: $10-22$
	Reduce Intersection Skew from X to Y-4-Leg Intersection	ALL	Rural	**	**	**	**	20	-	4-Leg Stop-Controlled Intersection	Intersection Skew Angle of X Degrees	HSM Equation: $10-23$
	Systemic Signage and Pavement Marking Improvements	ALL	-	0.899	0.899	0.899	0.917	6	-	Stop-Controlled Intersection	Stop-Controlled Intersection with No Supplemental Signage	FHWA Proven Safety Countermeasures
	Transverse Rumble Strips	ALL	Rural	0.987	0.987	0.987	1.191	10	Minor Arterial	Stop-Controlled Intersection Approach	No Transverse Rumble Strips Present	$\begin{aligned} & \text { CMF ID: 2707, } \\ & 2708 \end{aligned}$
	Add Quadrant Roadway to Intersection	N/A	-	-	-	-	-	20	-	Conventional Intersection	Conventional Intersection	N/A
	Convert 3-Leg Signalized Intersection to Continuous Green T-Intersection	ALL	-	0.846	0.846	0.846	0.958	20	-	3-Leg Signalized Intersection	Standard 3-Leg Signalized Intersection	$\begin{aligned} & \text { CMF ID: 8655, } \\ & 8656 \end{aligned}$

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Convert At-Grade Intersection to Interchange	ALL	-	0.58	0.43	0.43	0.64	20	-	4-Leg Intersection	At-Grade Intersection	$\begin{aligned} & \text { CMF ID: 459, } \\ & 460,461 \end{aligned}$
	Convert 4-Leg Intersection to Two Offset T-Intersections	ALL	Urban	0.75	0.75	0.75	1	20	-	4-Leg Stop-Controlled Intersection	4-Leg Stop-Controlled Intersection	HSM CMF: Table 14-2
	Convert Minor Stop-Control to All-Way Stop Control	ALL	ALL	0.23	0.23	0.23	0.319	20	-	Minor Stop-Controlled Intersection	Stop-Control on Minor Approaches	$\begin{aligned} & \text { CMF ID: 3127, } \\ & 3128 \end{aligned}$
	Convert Signalized Intersection to Roundabout	ALL	-	0.52	0.22	0.22	0.52	20	-	Signalized Intersection	Signalized Intersection	$\begin{aligned} & \text { CMF ID: 225, } \\ & 226 \end{aligned}$
	Convert Stop-Controlled Intersection to Roundabout	ALL	ALL	0.56	0.18	0.18	0.56	20	-	Stop-Controlled Intersection	Minor Stop-Controlled Intersection	$\begin{aligned} & \text { CMF ID: } 227 \text {, } \\ & 228 \end{aligned}$
	Convert Stop-Controlled Intersection to Signalized Intersection	ALL	ALL	0.642	0.642	0.642	0.639	20	-	Stop-Controlled Intersection	Minor Stop-Controlled Intersection	$\begin{aligned} & \text { CMF ID: 7983, } \\ & 7986 \end{aligned}$
z은\vdots00$\frac{1}{u}$$\frac{5}{2}$	Convert to Displaced LeftTurn Intersection	ALL	-	0.81	0.81	0.81	0.76	20	-	High-Speed Intersection	Traditional Intersection	FHWA TechBrief
	Convert to J-Turn Intersection	ALL	Rural	0.652	0.463	0.463	0.652	20	Principal ArterialOther	High-Speed Intersection	At-Grade Minor StopControlled Intersection	CMF ID: 5555, 5556
	Convert to Median U-Turn Intersection	ALL	-	0.70	0.70	0.70	0.91	20	Arterial	High-Speed Intersection	Conventional Signalized Intersection	FHWA TechBrief
	Convert to Signalized Intersection to Signalized RCUT	ALL	-	0.78	0.78	0.78	0.85	20	-	High-Speed Signalized Intersection	Conventional Signalized Intersection	FHWA Report
	Convert to Signalized Intersection to Unsignalized RCUT	N/A	-	-	-	-	-	20	-	High-Speed Signalized Intersection	Signalized Intersection	N/A
	Convert to Unsignalized Intersection to Unsignalized RCUT	ALL	Rural	0.37	0.37	0.37	0.54	20	Principal ArterialOther	High-Speed Stop-Controlled Intersection	Conventional Unsignalized Intersection	$\begin{aligned} & \text { CMF ID: 4883, } \\ & 4884 \end{aligned}$
	Convert Two Offset T-Intersection, Offset by X Miles, to T-Intersections with Major Road AADT	ALL	Rural	**	**	**	**	20	-	Offset T-Intersections	T-Intersections Offset by X Miles	HSM Eqn $10-17$
	Convert Unsignalized Intersection to Unsignalized Superstreet Intersection	ALL	Rural	0.37	0.37	0.37	0.54	20	Principal Arterial- Other	High-Speed Stop-Controlled Intersection	Stop-Control on Minor Approaches	$\begin{aligned} & \text { CMF ID: 4883, } \\ & 4884 \end{aligned}$

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Install Interim Roundabout	ALL	ALL	0.23	0.23	0.23	0.319	5	-	Stop-Controlled Intersection	Stop-Control on Minor Approaches	$\begin{aligned} & \text { CMF ID: } 3127 \text {, } \\ & 3128 \end{aligned}$
	Remove Unwarranted Signal	ALL	U	0.76	0.76	0.76	0.76	20	Minor Arterial, Collectors	Signalized Intersection of One-Way Streets	Unwarranted Traffic Signal	CMF ID: 332
	Install Temporary Traffic Circle	N/A	-	-	-	-	-	2	-	Unsignalized Intersection	No Control, Yield Control, or Stop Controlled	N/A
	Active Traffic Management with Hard Shoulder Running	ALL	-	0.69	0.69	0.69	0.75	20	Principal Arterial - Interstate	Freeway Segment	No Active Traffic Management or Hard Shoulder Running	UVA Study
	Active Traffic Management without Hard Shoulder Running	ALL	-	1.18	1.18	1.18	1.16	20	Principal Arterial Interstate	Freeway Segment	No Active Traffic Management	UVA Study
	Add Cable Median Barrier	$\begin{aligned} & \text { CM,F, } \\ & \text { O, HO } \end{aligned}$	Rural	0.09	0.09	0.09	0.09	15	Principal Arterial Interstate	Freeway Segment with Traversable Median	No Median Barrier Present	CMF ID:1966
	Add Rumble Strips to Inside Shoulder	SV	-	0.811	0.811	0.811	1	10	Principal Arterial Intersectate	Freeway Segment	No Rumble Strips Present on Inside Shoulder	HSM Eqn 18-36
	Add Median Concrete Barrier	$\begin{aligned} & \text { CM,F, } \\ & \text { O,HO } \end{aligned}$	Rural	0	0	0	0	15	Principal Arterial-Other Freeways and Expressways	Freeway Segment	No Median Barrier Present	CMF ID: 2256
	Add Median Guardrail	CM	-	0.22	0.22	0.22	0.22	15	Principal Arterial - Other Freeways and Expressways	Freeway Segment	No Median Barrier Present	CMF ID: 51
	Add Rumble Strips to Outside Shoulder	SV	-	0.811	0.811	0.811	1	10	Principal Arterial Intersectate	Freeway Segment	No Rumble Strips Present on Outside Shoulder	HSM Eqn $18-36$
	Add Raised Pavement Markers	ALL	Rural	0.87	0.87	0.87	0.87	2	Principal Arterial - Other Freeways and Expressways	Freeway Segment	No Raised Pavement Markers Present	CMF ID: 5498
	Add Roadside Guardrail	ALL	-	0.84	0.84	0.99	1.06	15	Principal Arterial - Other Freeways and Expressways	Freeway Segment	No Roadside Barrier Present	$\begin{aligned} & \text { CMF ID: } 8391 \text {, } \\ & 8392,8393 \end{aligned}$

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	$\begin{aligned} & \text { CRASH } \\ & \text { TYPE } \end{aligned}$	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Implement Incident Management to Reduce Incident Duration Time	SC	-	0.85	0.85	0.85	0.85	6	Principal Arterial - Interstate	Freeway Segment	No Incident Management Program	VA Planning Level CMFs
	Implement Variable Speed Limits	ALL	Urban	0.71	0.71	0.71	0.75	6	Principal Arterial Interstate	Freeway Segment	Static Posted Speed Limit	$\begin{aligned} & \text { CMF ID: 8730, } \\ & 8731 \end{aligned}$
	Rural: Widen from 4 Lanes to 6 Lanes	ALL	Rural	0.7	0.7	0.7	0.7	20	-	Rural Freeway Segment	4-Lane Cross-Section	VDOT SPFs, Crash Rate Ratios
	Upgrade Horizontal Curve Signage	ALL	Rural	0.75	0.75	0.75	0.82	6	-	Freeway Horizontal Curve Segment	No Horizontal Curve Signs or Dirty Signs with No Retroreflectivity	$\begin{aligned} & \text { CMF ID: 2431, } \\ & 2433 \end{aligned}$
	Upgrade Pavement Markings to Wet-Reflective Pavement Markings	ALL	-	0.881	0.881	0.881	1.032	2	Principal Arterial - Other Freeways and Expressways	Freeway Segment	Standard Pavement Markings	$\begin{aligned} & \text { CMF ID: 8093, } \\ & 8134 \end{aligned}$
	Upgrade Roadside Guardrail	ALL	-	0.95	0.95	0.95	0.95	10	-	Freeway Segment with Roadside Guardrail	Damaged or Below Standard Guardrail	Desktop Reference Guide
	Urban: Widen from 4 Lanes to 6 Lanes	ALL	Urban	0.9	0.9	0.9	0.9	20	-	Urban Freeway Segment	4-Lane Cross-Section	VDOT SPFs, Crash Rate Ratios
	Urban: Widen from 4 Lanes to 8+ Lanes	ALL	Urban	0.75	0.75	0.75	0.75	20	-	Urban Freeway Segment	4-Lane Cross-Section	VDOT SPFs, Crash Rate Ratios
	Urban: Widen from 6 Lanes to 8+ Lanes	ALL	Urban	0.8	0.8	0.8	0.8	20	-	Urban Freeway Segment	6-Lane Cross-Section	VDOT SPFs, Crash Rate Ratios
	Widen Clear Zone from X Feet to Y Feet	SV	-	**	**	**	1	20	-	Freeway Segment	Clear Zone Width of X Feet	$\begin{aligned} & \text { HSM Eqn } \\ & 18-38 \end{aligned}$
	Widen Median from X Feet to Y Feet	ALL	-	**	**	**	**	20	-	Freeway Segment	Median Width of X Feet	HSM Eqn 18-27
	Widen Paved Inside Shoulder from X Feet to Y Feet	ALL	-	**	**	**	**	20	-	Freeway Segment	Inside Shoulder Width of X Feet	HSM Eqn $18-26$
	Widen Paved Outside Shoulder on Horizontal Curve from X Feet to Y Feet	SV	-	**	**	**	**	20	-	Freeway Horizontal Curve Segment	Outside Shoulder Width of X Feet	HSM Eqn 18-35 and Table 18-21

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	$\begin{aligned} & \text { CRASH } \\ & \text { TYPE } \end{aligned}$	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Widen Paved Outside Shoulder on Horizontal Tangent from X Feet to Y Feet	SV	-	**	**	**	1	20	-	Freeway Horizontal Tangent Segment	Outside Shoulder Width of X Feet	HSM Eqn 18-35 and Table 18-21
	Add Automated Speed Enforcement Cameras	ALL	-	0.83	0.83	0.83	0.84	6	-	Non-Freeway Segment	No Automated Speed Enforcement Present	$\begin{aligned} & \text { CMF ID: } 2688 \text {, } \\ & 4583 \end{aligned}$
	Add Auxiliary Passing Lane	ALL	Rural	0.67	0.67	0.67	0.58	20	-	Rural Two-Lane Undivided Highway	No Passing Lanes Present	$\begin{aligned} & \text { CMF ID: 9111, } \\ & 9112 \end{aligned}$
	Add Centerline Rumble Strips (Including Sinusoidal/ Mumble)	HO, O	Rural	0.55	0.55	0.55	0.63	10	-	Non-Freeway Segment	No Centerline Rumble Strips Present	$\begin{aligned} & \text { CMF ID: } 3355 \text {, } \\ & 3360 \end{aligned}$
	Add Chevron Signs at Horizontal Curves	Night Time	Rural	0.75	0.75	0.75	0.75	6	-	Small Radius Horizontal Curve on Rural Two-Lane Undivided Highway	No Chevrons Present	CMF ID: 2439
	Add Chevron Signs, Curve Warning Signs, and Sequential Flashing Beacons	Night Time	-	0.592	0.592	0.592	0.592	6	-	Horizontal Curve on Multilane Highway	No Curve Delineation Treatment Present	CMF ID: 1852
	Add Raised Pavement Markers	ALL	Rural	0.81	0.81	0.81	0.81	2	Principal Arterial - Other Freeways and Expressways	Non-Freeway Segment	No Raised Pavement Markers Present	CMF ID: 5496
	Add Safety Edge	Run Off Road	Rural	0.79	0.79	0.79	0.79	15	Principal Arterial Other	Two-Lane Undivided Rural Highway	No Safety Edge Present	FHWA Proven Safety
	Add Segment Lighting	Night Time	Urban	0.68	0.68	0.68	0.76	15	Minor Arterial	Non-Freeway Segment	No Lighting Present	$\begin{aligned} & \text { CMF ID: 7781, } \\ & 7782 \end{aligned}$
	Add Shoulder Rumble Strips (Including Sinusoidal/ Mumble)	Run Off Roadright	Rural	0.83	0.83	0.83	0.84	10	-	Non-Freeway Segment	No Shoulder Rumble Strips Present	$\begin{aligned} & \text { CMF ID: 3442, } \\ & 3447 \end{aligned}$
	Add Two-Way Left-Turn Lane (2U to 3T)	ALL	-	0.739	0.739	0.739	0.797	20	-	Two-Lane Undivided Highway	No TWLTL Present	$\begin{aligned} & \text { CMF ID: 2341, } \\ & 2346 \end{aligned}$
	Add Two-Way Left-Turn Lane (4U to 5T)	ALL	Urban	0.45	0.45	0.45	0.45	20	-	Four-Lane Undivided Highway	No TWLTL Present	CMF ID: 4084
	Breakaway Supports for Utility Poles in Clear Zones	ALL	Rural	0.94	0.94	0.94	1.00	10	-	Non-Freeway Segment	Non-Breakaway Supports	$\begin{aligned} & \text { HSM Eqn } \\ & 10-20 \end{aligned}$
	Change 4" Wide Edgelines to 6" Wide Edgelines	ALL	Rural	0.635	0.635	0.635	0.877	2	-	Rural Two-Lane Highway	4" Edgelines	$\begin{aligned} & \text { CMF ID: 4737, } \\ & 4738 \end{aligned}$

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
	Change Driveway Density (Driveways/Mile) from X to Y	ALL	Rural	**	**	**	**	20	Principal Arterial Other	Rural Non-Freeway Segment	Driveway Density of X Driveways per Mile	$\begin{aligned} & \text { CMF ID: 1973, } \\ & 2248 \end{aligned}$
	Change Roadside Hazard Rating from X to Y by Flattening Roadside Slope	ALL	Rural	**	**	**	**	20	-	Two-Lane Undivided Highway	Roadside Hazard Rating of X ■	$\begin{aligned} & \text { HSM Eqn } \\ & 10-20 \end{aligned}$
	Change Superelevation Variance from X to Y (if Variance Between 0.01 and 0.02)	ALL	Rural	**	**	**	**	20	-	Horizontal Curve on Two-Lane Undivided Highway	Superelevation Deficiency of X Feet per Foot in Decimal	$\begin{aligned} & \text { HSM Eqn } \\ & 10-15 \end{aligned}$
	Change Superelevation Variance from X to Y (if Variance Greater than 0.02)	ALL	Rural	**	**	**	**	20	-	Horizontal Curve on Two-Lane Undivided Highway	Superelevation Deficiency of X Feet per Foot in Decimal	$\begin{aligned} & \text { HSM Eqn } \\ & 10-16 \end{aligned}$
	Dynamic Speed Feedback Signs	ALL	Rural	0.95	0.95	0.95	0.95	6	-	Two-Lane Undivided Highway	No Dynamic Speed Feedback Sign Present	CMF ID: 6885
	Flatten Horizontal Curve	ALL	Rural	-	-	-	-	20	-	Horizontal Curve on Two-Lane Undivided Highway	Please use the Existing Horizontal Curve Geometry Tab to Calculate the CMFs	$\begin{aligned} & \text { CMF ID: 9271, } \\ & 9272 \end{aligned}$
	Implement High-Friction Surface Treatment on Horizontal Curve	ALL	-	0.759	0.759	0.759	0.759	10	-	Horizontal Curve on Non-Freeway Segment	Horizontal Curve with Standard Pavement	CMF ID: 7900
	Increase Stopping Sight Distance on Crest Vertical Curve	ALL	Rural	0.76	0.76	0.76	0.82	20	-	Crest Vertical Curve on Two-Lane Highway	Crest Vertical Curve with Inadequate Sight Distance	$\begin{aligned} & \text { CMF ID: } 6868 \text {, } \\ & 6869 \end{aligned}$
	Pave Unpaved Shoulder	ALL	Rural	0.97	0.97	0.97	0.97	20	-	Two-Lane Undivided Rural Highway	Unpaved Shoulder	HSM Eqn 10-12, Table 10-9 and 10-10
	Pavement Resurfacing Rural	ALL	Rural	1.03	1.03	1.03	1.03	10	-	Two-Lane Undivided Highway	Old Pavement	CMF ID: 5626
	Pavement Resurfacing Urban	ALL	Urban	0.894	0.894	0.894	0.929	10	Principal Arterial Other	Non-Freeway Segment	Old Pavement	$\begin{aligned} & \text { CMF ID: 9289, } \\ & 9290 \end{aligned}$
	Prohibit On-Street Parking	ALL	Urban	0.78	0.78	0.78	0.72	20	Principal Arterial Other	Urban Arterial with Street Parking	On-Street Parking Allowed	$\begin{aligned} & \text { CMF ID: 4574, } \\ & 4575 \end{aligned}$
	Remove or Relocate Fixed Object Outside of Clear Zone	CFO	-	0.62	0.62	0.62	0.62	20	-	Non-Freeway Segment	Fixed Object within Clear Zone	$\begin{aligned} & \text { CMF ID: 1024, } \\ & 1044 \end{aligned}$
	Road Diet (4U to 3T)	ALL	Urban	0.71	0.71	0.71	0.71	20	Minor Arterial	4-Lane Undivided Highway	4-Lane Cross-Section	CMF ID: 199

■ Please go to https://www.fhwa.dot.gov/publications/research/safety/99207/appd.cfm for a description of RHR ratings.

VIRGINIA STATE PREFERRED CMF LIST

Table 1 Virginia State Preferred CMF List (cont)

	COUNTERMEASURE	CRASH TYPE	AREA TYPE	K	A	BC	0	SERVICE LIFE	FUNCTIONAL CLASS	SITE DESCRIPTION	PRIOR CONDITION	REFERENCE
SEGMENTS (NON-FREEWAY)	Upgrade Chevrons with Flourescent Sheeting	Night time	Rural	0.65	0.65	0.65	0.65	6	-	Horizontal Curve on Rural Two-Lane Undivided Highway	No Signs Present, Signs with No Fluorescent Sheeting, or Dirty Signs Present	CMF ID: 2434
	Upgrade Pavement Markings by Increasing Retroreflectivity	Night time	-	0.81	0.81	0.81	0.81	2	-	Non-Freeway Segment	Edgeline, Centerline, and Skip Line Pavement Markings with Low Retroreflectivity	$\begin{aligned} & \text { CMF ID: 2116, } \\ & 2117,2120 \end{aligned}$
	Upgrade Pavement Markings to Wet-Reflective Pavement Markings	ALL	-	0.881	0.881	0.881	1.032	2	Principal Arterial-Other Freeways and Expressways	Non-Freeway Segment	Traditional Pavement Markings	$\begin{aligned} & \text { CMF ID: 8093, } \\ & 8134 \end{aligned}$
	Widen Clear Zone	ALL	Rural	0.78	0.78	0.78	0.78	20	-	Rural Two-Lane Highway	Rural Two-Lane Highway with Narrow Clear Zone	CMF ID: 35
	Widen Lane	ALL	Rural	0.87	0.87	0.87	0.87	20	-	Two-Lane Undivided Highway	Narrow Lane Width	HSM Table 10-8, Eqn 10-11
	Widen Average Shoulder Width	HO, CFO, $0, \mathrm{~S}$	Rural	-	-	-	A	20	-	Two-Lane Undivided Highway	Existing Shoulder Width	HSM 10-9

Table 2 CMFunction Equations

	COUNTERMEASURE	K	A	BC	0	UNITS
	Lengthen Acceleration Lane from X Miles to Y Miles	$\mathrm{e}^{-4.55^{*}[\mathrm{Y}-\mathrm{X}]}$	$e^{-4.55^{*}[\gamma-X]}$	$e^{-4.55^{*}[\gamma-X]}$	$\mathrm{e}^{-2.59^{*}[\mathrm{Y}-\mathrm{X}]}$	Miles
	Widen Ramp Lane Width from X to Y in Feet	$e^{0.0458^{*}[\mathrm{X}-\mathrm{Y}]}$	$e^{0.0458^{*}[X-Y]}$	$e^{0.0458^{*}[\mathrm{X}-\mathrm{Y}]}$	1	Feet
	Widen Ramp Left Shoulder X Feet to Y Feet	$e^{0.0539^{*}[\mathrm{X}-\mathrm{Y}]}$	$e^{0.0539^{*}[X-Y]}$	$e^{0.0539^{*}[X-Y]}$	$e^{0.0259^{*}[X-Y]}$	Feet
	Widen Ramp Right Shoulder X Feet to Y Feet	$e^{0.0539 *[X-Y]}$	$e^{0.0539^{*}[\mathrm{X}-\mathrm{Y}]}$	$e^{0.0539^{*}[X-Y]}$	$e^{0.0259 *[X-Y]}$	Feet
z은u0wwㄴz	Change Number of Approaches with Left-Turn Lanes from X Approaches to Y Approaches	$0.90{ }^{\text {Y-X }}$	$0.90^{\mathrm{Y}-\mathrm{X}}$	$0.90{ }^{\mathrm{Y}-\mathrm{X}}$	$0.90^{\text {r-x }}$	Approaches
	Change Number of Approaches with Prohibited Right Turn on Red from X Approaches to Y Approaches	$0.98{ }^{\text {r-X }}$	$0.98{ }^{\text {r-X }}$	$0.98{ }^{\mathrm{Y}-\mathrm{X}}$	$0.98{ }^{\text {r-x }}$	Approaches
	Change Number of Approaches with Right-Turn Lanes from X Approaches to Y Approaches	$0.96{ }^{\text {r-x }}$	$0.96{ }^{\mathrm{r}-\mathrm{X}}$	$0.96{ }^{\text {r-x }}$	$0.96{ }^{\text {r-X }}$	Approaches
	Change Number of Cycles per Hour from X Cycles per Hour to Y Cycles per Hour	$e^{-0.0444^{*}[\gamma-X]}$	$\mathrm{e}^{-0.0444^{*}[\gamma-X]}$	$\mathrm{e}^{-0.0444^{*}[\mathrm{Y}-\mathrm{X}]}$	$\mathrm{e}^{-0.0444^{*}[Y-X]}$	Cycles per Hour
	Change Number of Uncontrolled Approaches with Left-Turn Lanes from X Approaches to Y Approaches at 4-Leg Intersection	$0.72{ }^{\text {r-X }}$	$0.72{ }^{\text {r-X }}$	$0.72{ }^{\text {Y-X }}$	$0.72{ }^{\text {r-X }}$	Approaches
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Intersection of Rural, Multilane Highway	$0.77^{\mathrm{r}-\mathrm{x}}$	$0.77^{\mathrm{Y}-\mathrm{X}}$	$0.77^{\text {r-x }}$	$0.77^{\mathrm{r}-\mathrm{x}}$	Approaches
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Intersection of Rural, Two-Lane Roads	$0.86{ }^{\text {Y-X }}$	$0.86{ }^{\mathrm{Y}-\mathrm{X}}$	$0.86{ }^{\text {r-X }}$	$0.86{ }^{\text {r-X }}$	Approaches
	Change Number of Uncontrolled Approaches with Right-Turn Lanes from X to Y at Urban or Suburban Arterial Intersection	$0.86{ }^{\text {r-X }}$	$0.86{ }^{\mathrm{Y}-\mathrm{X}}$	$0.86{ }^{\mathrm{Y}-\mathrm{X}}$	$0.86{ }^{\text {r-X }}$	Approaches
	Increase Intersection Sight Distance from X Feet of Available Sight Distance to Y Feet	$e^{195.791 \star[1 / \mathrm{V}-1 / \mathrm{X}]}$	$\mathrm{e}^{195.791^{*}[1 / \mathrm{Y}-1 / \mathrm{X}]}$	$\mathrm{e}^{195.791^{\star}[1 / \mathrm{l}-1 / \mathrm{X}]}$	$\mathrm{e}^{203.368^{*}[1 / \mathrm{V}-1 / \mathrm{X}]}$	Feet

Table 2 CMFunction Equations (cont)

	COUNTERMEASURE	K	A	BC	0	UNITS
	Reduce Intersection Skew from X to Y-3 Leg Intersection	$e^{0.004^{*}[\mathrm{Y}-\mathrm{X}]}$	$e^{0.004 *[Y-X]}$	$e^{0.004 *[Y-X]}$	$e^{0.004^{*}[\mathrm{Y}-\mathrm{X}]}$	Degrees of Skew
	Reduce Intersection Skew from X to Y-4 Leg Intersection	$e^{0.0054 *[Y-X]}$	$e^{0.0054 \star[Y-X]}$	$e^{0.0054 *[Y-X]}$	$e^{0.0054 \star[Y-X]}$	Degrees of Skew
	Convert Two Offset T-Intersection, Offset by X Miles, to 4-Leg Signalized Intersection with Major Road AADT	$\frac{\frac{0.05-0.005 * \ln (\mathrm{AADT})}{x}+0.322}{\frac{2 *(0.05-0.005 * \ln (\mathrm{AADT}))}{x}+0.322}$	$\frac{\frac{0.05-0.005 * \ln (\text { AADT })}{x}+0.322}{\frac{2 \star(0.05-0.005 * \ln (\text { AADT }))}{x}+0.322}$	$\frac{\frac{0.05-0.005 * \ln (\text { AADT })}{x}+0.322}{\frac{2 *(0.05-0.005 * \ln (\text { AADT }))}{x}+0.322}$	$\frac{\frac{0.05-0.005 * \ln (A A D T)}{x}+0.322}{\frac{2 \star(0.05-0.005 * \ln (\text { AADT }))}{x}+0.322}$	X-MIles AADT-Vehicles per Day
	Widen Clear Zone from X Feet to Y Feet	$e^{0.00451 *[X-Y]}$	$e^{0.00451 *[X-Y]}$	$e^{0.00451 *[X-Y]}$	1	Feet
	Widen Median from X Feet to Y Feet	$e^{0.131^{*}[1 / \mathrm{Y}-1 / \mathrm{X}]}$	$e^{0.131^{\star}[1 / \mathrm{Y}-1 / \mathrm{X}]}$	$e^{0.131^{\star}[1 / \mathrm{Y}-1 / \mathrm{X}]}$	$e^{0.169 *[1 / \mathrm{Y}-1 / \mathrm{X}]}$	Feet
	Widen Paved Inside Shoulder from X Feet to Y Feet	$e^{0.0172^{*}[\mathrm{X}-\mathrm{Y}]}$	$e^{0.0172^{\star}[\mathrm{X}-\mathrm{Y}]}$	$e^{0.0172^{*}[X-Y]}$	$e^{0.0153 *[X-Y]}$	Feet
	Widen Paved Outside Shoulder on Horizontal Curve from X Feet to Y Feet	$e^{0.0897 *[X-Y]}$	$e^{0.0897 *[X-Y]}$	$e^{0.0897 *[X-Y]}$	$e^{0.0840 *[X-Y]}$	Feet
	Widen Paved Outside Shoulder on Horizontal Tangent from X Feet to Y Feet	$e^{0.0647 *[X-Y]}$	$e^{0.0647 *[X-Y]}$	$e^{0.0647 *[X-Y]}$	1	Feet
	Change Driveway Density (Driveways/Mile) from X to Y	$e^{0.0152^{\star}[\mathrm{Y}-\mathrm{X}]}$	$e^{0.0152^{\star}[\mathrm{Y}-\mathrm{X}]}$	$e^{0.0152^{\star}[Y-X]}$	$e^{0.0232^{\star}[\mathrm{Y}-\mathrm{X}]}$	Driveways per Mile
	Change Roadside Hazard Rating from X to Y by Flattening Roadside Slope	$e^{0.0668 *[Y-X]}$	$e^{0.0668 *[Y-X]}$	$e^{0.0668 *[Y-X]}$	$e^{0.0668 *[Y-X]}$	Roadside Hazard Rating ■
	Change Superelevation Variance from X to Y (if Variance Between 0.01 and 0.02)	$\frac{1+6 *[\mathrm{Y}-0.01]}{1+6 *[\mathrm{x}-0.01]}$	$\frac{1+6 *[\mathrm{Y}-0.01]}{1+6 *[\mathrm{x}-0.01]}$	$1+6 *[\mathrm{Y}-0.01]$ $1+6 *[\mathrm{x}-0.01]$	$\frac{1+6 *[Y-0.01]}{1+6 *[x-0.01]}$	Feet per Foot
	Change Superelevation Variance from X to Y (if Variance Greater than 0.02)	$\frac{1.06+3 \star[\mathrm{Y}-0.02]}{1.06+3 *[\mathrm{x}-0.02]}$	$\frac{1.06+3 *[Y-0.02]}{1.06+3 *[x-0.02]}$	$\begin{gathered} 1.06+3 *[\mathrm{Y}-0.02] \\ \hline 1.06+3 *[\mathrm{x}-0.02] \end{gathered}$	$\frac{1.06+3 *[\mathrm{Y}-0.02]}{1.06+3 *[\mathrm{x}-0.02]}$	Feet per Foot

■ Please go to https://www.fhwa.dot.gov/publications/research/safety/99207/appd.cfm for a description of RHR ratings.

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

	COUNTERMEASURE	Reference	REFERENCE/CITATION HYPERLINK \#1	REFERENCE/CITATION HYPERLINK \#2
	Install Raised Pedestrian Crossing	PED CMF Toolbox	https://safety.fhwa.dot.gov/ped_bike/tools_solve/ fhwasa18041/fhwasa18041.pdf	-
	Prohibit Left Turns	Ped CMF Toolbox	https://safety.fhwa.dot.gov/ped_bike/tools_solve/ fhwasa18041/fhwasa18041.pdf	-
	Remove Parking Near Intersection	PED CMF Toolbox	https://safety.fhwa.dot.gov/ped_bike/tools_solve/ fhwasa18041/fhwasa18041.pdf	-
	Upgrade Crosswalk to High-Visibility	CMF ID: 4658	http://www.cmfclearinghouse.org/detail. cfm?facid=4658	-
	Widen Sidewalk at Intersection	CMF ID: 413	http://www.cmfclearinghouse.org/detail. cfm?facid=413	-
	Add Auxiliary Lane Between Entrance and Exit Ramps	CMF ID: 7440, 7441	http://www.cmfclearinghouse.org/detail. cfm?facid=7440	http://www.cmfclearinghouse.org/detail. cfm?facid=7441
	Add Collector-Distributor Road	ISATe, HSM Chapters 18 and 19	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Add Entrance Ramp to One Side of Freeway	ISATe, HSM Chapters 18 and 19	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Add Exit Ramp to One Side of Freeway	ISATe, HSM Chapters 18 and 19	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Convert Diamond Interchange to Diverging Diamond Interchange	CMF ID: 8258, 8278	http://www.cmfclearinghouse.org/detail. cfm?facid=8258	http://www.cmfclearinghouse.org/detail. cfm?facid=8278
	Convert Diamond Interchange to SPUI	VDOT Planning Level CMFs	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Extend Deceleration Lane Length by 100 Feet	CMD ID: 475	http://www.cmfclearinghouse.org/detail. cfm? facid $=475$	-
	Interchange Lighting	CMF ID: 1283	http://www.cmfclearinghouse.org/detail. cfm?facid=1283	-
	Lengthen Acceleration Lane from X Miles to Y Miles	CMF ID: 5215, 5216	http://www.cmfclearinghouse.org/detail. cfm?facid=5215	http://www.cmfclearinghouse.org/detail. cfm?facid=5216
	Replace Loop Ramp with Short Direct Ramp	CMF ID: 480	http://www.cmfclearinghouse.org/detail. cfm? facid=480	-
	Widen Ramp Lane Width from X to Y in Feet	HSM Eqn 19-34	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Ramp Left Shoulder	HSM Eqn 19-36	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Ramp Right Shoulder	HSM Eqn 19-35	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

	COUNTERMEASURE	Reference	REFERENCE/CITATION HYPERLINK \#1	REFERENCE/CITATION HYPERLINK \#2
	Upgrade Pavement Markings to Wet-Reflective Pavement Markings	CMF ID: 8093, 8134	http://www.cmfclearinghouse.org/detail. cfm?facid=8093	http://www.cmfclearinghouse.org/detail. cfm?facid=8134
	Upgrade Roadside Guardrail	Desktop Reference Guide	http://www.cmfclearinghouse.org/collateral/FHWA_ Desktop_Reference_Guide.pdf	-
	Urban: Widen from 4 Lanes to 6 Lanes	VDOT SPFs, Crash Rate Ratios	http://vasmartscale.org/documents/ss_planning_ level_cmfs_092116.pdf	-
	Urban: Widen from 4 Lanes to 8+ Lanes	VDOT SPFs, Crash Rate Ratios	http://vasmartscale.org/documents/ss_planning_ level_cmfs_092116.pdf	-
	Urban: Widen from 6 Lanes to 8+ Lanes	VDOT SPFs, Crash Rate Ratios	http://vasmartscale.org/documents/ss_planning_ level_cmfs_092116.pdf	-
	Widen Clear Zone from X Feet to Y Feet	HSM Eqn 18-38	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Median from X Feet to Y Feet	HSM Equation 18-27	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Paved Inside Shoulder from X Feet to Y Feet	HSM Eqn 18-26	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Paved Outside Shoulder on Horizontal Curve from X Feet to Y Feet	HSM Eqn 18-35 and Table 18-21	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
	Widen Paved Outside Shoulder on Horizontal Tangent from X Feet to Y Feet	HSM Eqn 18-35 and Table 18-21	http://onlinepubs.trb.org/onlinepubs/nchrp/docs/ nchrp17-45_fr.pdf	-
SEGMENTS (NON-FREEWAY)	Add Automated Speed Enforcement Cameras	CMF ID: 2688, 4583	http://www.cmfclearinghouse.org/detail. cfm?facid=2688	http://www.cmfclearinghouse.org/detail. cfm?facid=4583
	Add Auxiliary Passing Lane	CMF ID: 9111, 9112	http://www.cmfclearinghouse.org/detail. cfm?facid=9111	http://www.cmfclearinghouse.org/detail. cfm?facid=9112
	Add Centerline Rumble Strips (Including Sinusoidal/ Mumble)	CMF ID: 3355, 3360	http://www.cmfclearinghouse.org/detail. cfm?facid=3355	http://www.cmfclearinghouse.org/detail. cfm?facid=3360

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

	COUNTERMEASURE	Reference	REFERENCE/CITATION HYPERLINK \#1	REFERENCE/CITATION HYPERLINK \#2
	Add Chevron Signs at Horizontal Curves	CMF ID: 2439	http://www.cmfclearinghouse.org/detail. cfm?facid=2439	-
	Add Chevron Signs, Curve Warning Signs, and Sequential Flashing Beacons	CMF ID: 1852	http://www.cmfclearinghouse.org/detail. cfm?facid=1852	-
	Add Raised Pavement Markers	CMF ID: 5496	http://www.cmfclearinghouse.org/detail. cfm?facid=5496	-
	Add Safety Edge	FHWA Proven Safety Countermeasures	https://safety.fhwa.dot.gov/provencountermeasures/ safety_edge/	-
	Add Segment Lighting	CMF ID: 7781, 7782	http://www.cmfclearinghouse.org/detail. cfm?facid=7781	http://www.cmfclearinghouse.org/detail. cfm?facid=7782
	Add Shoulder Rumble Strips (Including Sinusoidal/ Mumble)	CMF ID: 3442, 3447	http://www.cmfclearinghouse.org/detail. cfm?facid=3442	http://www.cmfclearinghouse.org/detail. cfm?facid=3447
	Add Two-Way Left-Turn Lane (2U to 3T)	CMF ID: 2341, 2346	http://www.cmfclearinghouse.org/detail. cfm?facid=2341	http://www.cmfclearinghouse.org/detail. cfm?facid=2346
	Add Two-Way Left-Turn Lane (4U to 5T)	CMF ID: 4084	http://www.cmfclearinghouse.org/detail. cfm?facid=4084	-
	Breakaway Supports for Utility Poles in Clear Zones	HSM Eqn 10-20	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Change 4" Wide Edgelines to 6" Wide Edgelines	CMF ID: 4737, 4738	http://www.cmfclearinghouse.org/detail. cfm?facid=4737	http://www.cmfclearinghouse.org/detail. cfm?facid=4738
	Change Driveway Density (Driveways/Mile) from X to Y	CMF ID: 1973, 2248	http://www.cmfclearinghouse.org/detail. cfm?facid=1973	http://www.cmfclearinghouse.org/detail. cfm?facid=2248
	Change Roadside Hazard Rating from X to Y by Flattening Roadside Slope	HSM Eqn 10-20	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Change Superelevation Variance from X to Y (if Variance Between 0.01 and 0.02)	HSM Eqn 10-15	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Change Superelevation Variance from X to Y (if Variance Greater than 0.02)	HSM Eqn 10-16	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Dynamic Speed Feedback Signs	CMF ID: 6885	http://www.cmfclearinghouse.org/detail. cfm?facid=6885	-

VIRGINIA STATE PREFERRED CMF LIST

Table 3 References (cont)

	COUNTERMEASURE	reference	REFERENCE/CITATION HYPERLINK \#1	REFERENCE/CITATION HYPERLINK \#2
	Flatten Horizontal Curve	CMF ID: 9271, 9272	http://www.cmfclearinghouse.org/detail. cfm?facid=9271	http://www.cmfclearinghouse.org/detail. cfm?facid=9272
	Implement High-Friction Surface Treatment on Horizontal Curve	CMF ID: 7900	http://www.cmfclearinghouse.org/detail. cfm?facid=7900	-
	Increase Stopping Sight Distance on Crest Vertical Curve	CMF ID: 6868, 6869	http://www.cmfclearinghouse.org/detail. cfm?facid=6868	http://www.cmfclearinghouse.org/detail. cfm?facid=6869
	Pave Unpaved Shoulder	HSM Eqn 10-12, Table 10-9 and 10-10	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Pavement Resurfacing - Rural	CMF ID: 5626	http://www.cmfclearinghouse.org/detail. cfm?facid=5626	-
	Pavement Resurfacing - Urban	CMF ID: 9289, 9290	http://www.cmfclearinghouse.org/detail. cfm?facid=9289	http://www.cmfclearinghouse.org/detail. cfm?facid=9290
	Prohibit On-Street Parking	CMF ID: 4574, 4575	http://www.cmfclearinghouse.org/detail. cfm?facid=4574	http://www.cmfclearinghouse.org/detail. cfm?facid=4575
	Remove or Relocate Fixed Object Outside of Clear Zone	CMF ID: 1024, 1044	http://www.cmfclearinghouse.org/detail. cfm?facid=1024	http://www.cmfclearinghouse.org/detail. cfm?facid=1044
	Road Diet (4U to 3T)	CMF ID: 199	http://www.cmfclearinghouse.org/detail. cfm? facid=199	-
	Upgrade Chevrons with Flourescent Sheeting	CMF ID: 2434	http://www.cmfclearinghouse.org/detail. cfm?facid=2434	-
	Upgrade Pavement Markings by Increasing Retroreflectivity	CMF ID: 2116, 2117, 2120	http://www.cmfclearinghouse.org/detail. cfm?facid=2116	http://www.cmfclearinghouse.org/detail. cfm?facid=2117
	Upgrade Pavement Markings to Wet-Reflective Pavement Markings	CMF ID: 8093, 8134	http://www.cmfclearinghouse.org/detail. cfm?facid=8093	http://www.cmfclearinghouse.org/detail. cfm?facid=8134
	Widen Clear Zone	CMF ID: 35	http://www.cmfclearinghouse.org/detail.cfm?facid=35	-
	Widen Lane	HSM Table 10-8, Eqn 10-11	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-
	Widen Average Shoulder Width	HSM Table 10-9	https://www.fhwa.dot.gov/publications/research/ safety/99207/99207.pdf	-

Appendix I

Previous Studies

Appendix I-1

VDOT Study

COMMONWEALTH of VIRGINIA

 DEPARTMENT OF TRANSPORTATIONCulpeper District
Traffic Engineering

Route $\mathbf{7 4 3}$ \& Route 660 in Albemarle County

 Intersection Safety Evaluation

Route: Route 743 (Earlysville Rd) at Route 660 (Reas Ford Rd \& Earlysville Forest Dr) Location: Albemarle County, Virginia
Project Description: Intersection Safety Evaluation
Date: January 5, 2018
Prepared By: Jet R Dienner

Intersection Safety Evaluation Route 743 and Route 660, Albemarle County

Background

Culpeper District Traffic Engineering was requested by Delegate Rob Bell on behalf of citizens and residents in the area to evaluate safety at the intersection of Route 743 (Earlysville Road) and Route 660 (Reas Ford Road \& Earlysville Forest Dr). This intersection has been the subject of several study requests in the past, and this document is intended to provide information and guidance for future improvements as traffic volumes and development increases in this area in the future. Crash data, intersection sight distance, signal warrants, turn lane warrants, and sign and pavement markings were reviewed to identify possible operational and safety improvements. The subject intersection is shown in the study area maps below.

Existing Conditions

Route 743 (Earlysville Road) is a two lane roadway with an additional right turn lane in the northbound direction. It has a functional classification of Urban Collector, with a 2016 AADT of 9,500 vehicles per day, and is posted at 35 MPH within the limits of the study area. Route 660 west of the intersection (Reas Ford Rd) is a two lane roadway with a Rural Major Collector functional classification, a 2016 AADT of 2,000 vehicles per day, and is posted at 35 MPH within the limits of the study area. Route 660 east of the intersection (Earlysville Forest Dr) is a two lane roadway with a Urban Local functional classification, a 2016 AADT of 1,000 vehicles per day, and is posted at 35 MPH within the limits of the study area. Both approaches of Route 743 have appropriate MUTCD compliant advance intersection warning signs. Both approaches of Route 660 are currently stop-controlled at the intersection with appropriate MUTCD compliant "Stop Ahead" signs installed in advance of the intersection. The eastbound approach of Route 660 includes "Stop Ahead" pavement markings.

Crash Analysis

Five years of the most current crash data (June 1, 2012 through June 30, 2017) was examined. During that time frame there were 12 crashes within 300^{\prime} of the intersection. These crashes included four angle crashes, three left turn crashes, two road departure crashes, and three rear end crashes. Of the twelve crashes, there were three injury crashes resulting in four total injuries. One of the injury crashes was an angle crash resulting in two injuries, one road departure crash resulting in one injury, and the remaining injury came from a rear end crash. See exhibit 1 (of this report) for a detailed crash diagram.

Sight Distance Analysis

Sight Distance is a critical factor that plays into the cause of many angle crashes at an intersection. The AASHTO Green-book states that the Intersection sight distance for a 35 MPH roadway is a distance of 390 feet. The minimum measured sight distance was 420^{\prime} on the SB approach of Route 660. Left and Right sight distance requirements were exceeded for all approaches of the intersection as shown on the sight distance diagram (exhibit 2 of this report). It was observed that the stop bar on the SB approach can be shifted 8 ' closer to the edge of travel way, which will increase the sight distance on this approach by 40'+/-.

Signal Warrant Analysis-Methodology

The 2009 Edition of the MUTCD lists various Traffic Signal warrants to analyze in consideration for the installation of a Traffic Signal at intersecting roadways. For this safety study Warrant 1 -- Eight-Hour Vehicular Volume, Warrant 2 -- Four-Hour Vehicular Volume, and Warrant 7 -- Crash Experience, were analyzed to determine if this intersection would meet any of these warrants. Warrant 3 -- Peak Hour was not analyzed as the Peak Hour warrant is applicable only in "unusual cases, such as office complexes, manufacturing plants, industrial complexes, or high-occupancy vehicle facilities that attract or discharge large numbers of vehicles over a short time" (2009 MUTCD, Section 4C.04). Based on the classification of the major route and field observation, the peak hour warrant did not currently apply. Refer to Chapter 4C, "Traffic Control Signal Needs Studies" in the 2009 edition of the MUTCD for detailed descriptions of each traffic signal Warrant criteria. A 12 hour turning movement count was collected on November 14, 2016 from 6:30 AM to 6:30 PM. The data gathered was used to analyze the 8 and 4 hour warrants. Based on the Urban Collector functional classification of Route 743, the close proximity to neighborhoods, and the posted 35 MPH speed limit, urban values were used. PC Warrants software was used to analyze the data (exhibit 3 of this report). It was noted during the 12 hour field observation that minimal delay and queue lengths were observed. The longest observed queue was six vehicles on EB 660. The following summarizes the findings regarding the signal warrant analysis for the study intersection. The current traffic volumes do not meet eight or four hour signal warrants. The minor route (Route 660) traffic volumes are 30% below the threshold for meeting eight hour signal Warrant 1A. Results of the signal warrant analysis for the eight and four hour warrants and the crash warrant are below:

Results

Warrant 1, Eight-Hour Vehicular Volume:

Condition A: The minimum vehicular volume is intended for application at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic control signal. For Route 743, Condition A requires 500 vehicles per hour for any eight hours of the average day; Route 660 is required to carry 150 vehicles per hour for the same eight hours (Table 4C-1) on the highest volume approach. Route 660 carries 124 vehicles in its peak hour with no right turn discount.

Due to the minor street approach volumes, Warrant 1 A is not met.

Condition B: The interruption of continuous traffic is intended for application at locations where Condition A is not satisfied and where the traffic volume on a major street is so heavy that traffic on a minor intersecting street suffers excessive delay or conflict in entering or crossing the major street. The volumes required for the same eight hours for Route 743 and Route 660 are 750 vehicles per hour and 75 vehicles per hour respectively. Route 743 only carries sufficient volume to meet Condition B for 2 of the counted hours.
Due to lack of sufficient volumes Warrant 1B is not met.

Condition C : The combination of conditions A and B is intended for application at location where Condition A is not satisfied and Condition B is not satisfied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems. For Condition C, 80% of the volumes in both Condition A and B must be met. Based on current volumes this intersection does not meet this criterion.

Due to lack of sufficient volumes, Warrant 1C is not met.

Table 4C-1. Warrant 1, Eight-Hour Vehicular Volume
Condition A-Minimum Vehicular Volume

Number of la traffic on	es for moving approach	Vehicles per hour on major street (total of both approaches)				Vehicles per hour on higher-volume minor-street approach (one direction only)			
Major Street	Minor Street	$100 \%{ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text { }}$	56\% ${ }^{\text {d }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\circ}$	56\% ${ }^{\text {d }}$
1	1	500	400	350	280	150	120	105	84
2 or more	1	600	480	420	336	150	120	105	84
2 or more	2 or more	600	480	420	336	200	160	140	112
1	2 or more	500	400	350	280	200	160	140	112

Condition B-Interruption of Continuous Traffic

Number of lanes for moving traffic on each approach		Vehicles per hour on major street (total of both approaches)				Vehicles per hour on higher-volume minor-street approach (one direction only)			
Major Street	Minor Street	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\circ}$	56\% ${ }^{\text {d }}$	100\% ${ }^{\text {a }}$	$80 \%{ }^{\text {b }}$	70\% ${ }^{\circ}$	56\% ${ }^{\text {d }}$
1	1	750	600	525	420	75	60	53	42
2 or more	1	900	720	630	504	75	60	53	42
2 or more	2 or more	900	720	630	504	100	80	70	56
1	2 or more	750	600	525	420	100	60	70	56

a Basic minimum hourly volume
${ }^{\text {b }}$ Used for combination of Conditions A and B after adequate trial of other remedial measures

- May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000
${ }^{d}$ May be used for combination of Conditions A and B afier adequate trial of other remedial measures when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Warrant 2, Four-Hour Vehicular Volume

The four hour vehicular volume signal warrant conditions are intended to be applied where the volume of intersecting traffic is the principal reason to consider installing a traffic control signal. Warrant 2 requires that for any four hours of the day the vehicles per hour from the minor street plotted with the total vehicles per hour for the same four hours must fall above the curve shown below. The required minimum volume on Route 660 only met for the required volumes for 1 out of the required 4 hours.

The minor approaches do not have sufficient volume for four hours a day and Warrant 2 is not met.

Warrant 7, Crash Experience

Two correctable crashes (by type) occurred in the most recent year of crash data. In order for the crash warrant to be met, five crashes of a correctable type must occur at the intersection within the 12 month study period, after an adequate trial of alternatives with satisfactory observance and enforcement has failed to reduce the crash frequency. Current district average is one per year. See exhibit 1 (of this report) for a detailed crash diagram.

The two crashes of a correctable type in the intersection within the past 12 months does not meet the five required by the warrant. Warrant 7 is not met.

Turn Lane Warrant Analysis-Methodology

Turn Lane Warrants were examined for all approaches per the guidance provided in Appendix F, Section 3 "Turning Lanes" of the VDOT Road Design Manual. These warrants were provided as a part of this report to provide an analysis of how the intersection is functioning operationally, and provide guidance for recommended improvements as traffic volumes and development in the area increases. These analyses are attached as Exhibit 4 of this report. The table below summarizes the results:

TURN LANE WARRANT SUMMARY (L= Storage Lane Length, T=Taper Length)					
	Right Turn Lane/Taper	Right Turn Storage Lane \& Taper Length	Left Turn Lane/Taper	Left Turn Storage Lane \& Taper Length	
Route 743 NB	N/A	Existing	 Taper Warrants	L= 200', T=200' Route 743 SB Route 660 EB Only Taper Warrants	
Route 660 WB	Does not meet warrants	$\mathrm{T}=200^{\prime}, \mathrm{T}=200^{\prime}$	Does not meet warrants	N/A	

Study Summary and Proposed Recommendations

Upon review of the intersection crash history, existing traffic control devices, daily traffic volumes, and available sight distance, it has been determined that the existing roadway geometrics and traffic control devices are functionally adequate in safely controlling the current volume of traffic at this intersection. While the current crash volumes are relatively low, the study revealed things that can be improved in the short, intermediate, and long-term to improve the safety and functionality of the intersection as traffic volumes and development increases. These results and recommendations are listed below.

Results of the crash data and signal warrants show that a signal is NOT warranted at Route 743 (Earlysville Rd) and Route 660 (Reas Ford Rd \& Earlysville Forest Dr). None of the signal warrants, including the crash warrant, were currently met. The current stop signs and advance warning signs are appropriate as installed with no upgrades recommended at the time of this study.

Recommendations have been categorized into short, intermediate and long-term. These are typically defined as follows:
Short Term Recommendations can be generalized as improvements that are low cost, quickly implementable (within a few weeks to a few months), require little or no engineering design, typically require no right-of way, and can be done with state or contractor work forces.
Intermediate Term Recommendations can be generalized as improvements that are low to mid-range in cost, implementable within six months to a couple years, require minimal engineering design, typically require little or no right-of way, and can be implemented partially or in full with state or contractor work forces.
Long Term Recommendations can be generalized as those improvements that are mid to high cost, require planning and design, may take one to six years to implement, typically require right-of way, and are typically implemented through a contract with contractor work forces.

Short Term Recommendations:

- Refresh "Stop Ahead" pavement markings
- Shift WB approach stop bar to improve sight distance
- Refresh EB approach stop bar

The review of the pavement markings and intersection sight distance revealed some things that can be upgraded and improved to improve the overall safety of intersection. The current "Stop Ahead" pavement marking on the eastbound approach of Route 660 are faded and should be refreshed. The transverse white lines prior and after these pavement markings should be removed. The existing stop bar on the WB approach of 660 is currently 16^{\prime} from the edge of the travel lane on Route 743 . Shifting this stop bar forward 8^{\prime} would improve the sight distance left by 40+/-, improving driver reaction/response time and improving safety. See exhibit 5 for the proposed pavement marking plan which includes both of these short term recommendations.

Intermediate Term Recommendations:

- Upgrade existing commercial entrances to meet VDOT standards
- Install a right turn lane on the EB approach

Results of the 5-year crash analysis show that there have been three crashes related to left turn movements into the commercial parcel on the northwest corner. This parcel does not currently have an entrance that meets VDOT Access Management standards. This entrance should be improved to meet standards in the future as it is developed.

Results of the turn lane warrants analysis revealed that a right turn lane is warranted on the EB approach of Route 660. Based on field observation, and the collected turning movement counts, this right turn is the highest volume turn movement of all (left or right) approaches. It is recommended that a right turn lane be constructed as funding and right of way become available (potentially with the development of the adjacent parcel). It appears that this turn lane could be constructed with minimal right of way acquisition, and grading/utility impacts, and it would currently provide the most Intermediate Term benefit to the operations of the intersection.

Long Term Recommendations

- Evaluate and install a roundabout as the preferred intersection alternative The results from the turn lane analysis show that right and left turn lanes are warranted under current traffic volumes on the EB and NB approaches. As traffic volumes and development increases in the area queues and delays are likely to increase to a point where operations and safety will warrant significant intersection upgrades. While a right tune lane on the EB approach is an intermediate term recommendation at this location, a left turn lane would cost significantly more due to the right of way acquisition and utility relocation cost. Additionally the potential points of conflict would not be reduced by the addition of turn lanes, and the NB approach grades limit sight distance to potential queued traffic increasing the risk of rear end crashes. Based operations, safety, and NB sight distance it is recommended that a roundabout be evaluated in the future as the preferred alternative.

EXHIBIT 1

Crash Diagram

COLLISION DIAGRAM

Rte. 743 (Earlysville $\mathbb{R} d_{0}$) at Rt. 660 (Reas Ford Rd.)
Allbemarlle County

EXHIBIT 2

Sight Distance Diagram

EXHIBIT 3
 PC Warrants Report

VDOT Culpeper District Traffic Division
 Route 743 (Earlysville Rd) and Route 660 (Reas Ford Rd)

Signal Warrants - Summary

Major Street Approaches Minor Street Approaches
Northbound: 4750 Eastbound: 1000
Number of Lanes: 1
Total Approach Volume: 866
Westbound: 500
Number of Lanes: 1
Total Approach Volume: 563
Warrant Summary (Urban values apply.)
Warrant 1 - Eight Hour Vehicular Volumes .. Not Satisfied
Warrant 1A - Minimum Vehicular Volume Not Satisfied
Required volumes reached for 0 hours, 8 are needed
Warrant 1B - Interruption of Continuous Traffic Not Satisfied
Required volumes reached for 3 hours, 8 are needed
Warrant 1 A\&B - Combination of Warrants Not Satisfied
Required volumes reached for 1 hours, 8 are needed
Number of hours (0) volumes exceed minimum < minimum required (4).
Warrant 3A - Peak Hour Delay ...
Warrant 3B - Peak Hour Volumes Not Evaluated
Warrant 4 - Pedestrian Volumes
Warrant 5 - School Crossing Not Evaluated
Warrant 6-Coordinated Signal System Not Evaluated
Warrant 7-Crash Experience
Number of accidents (2) is less than minimum (5). Volume minimums are not met.
Warrant 8 - Roadway Network Not Evaluated

VDOT Culpeper District Traffic Division
 Route 743 (Earlysville Rd) and Route 660 (Reas Ford Rd)

Signal Warrants - Summary

Analysis of 8-Hour Volume Warrants:

EXHIBIT 4

Turn Lane Warrants Analysis

WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)
Major Route \& Direction: Route 660 WB

Note: This spreadsheet is intended to supplement the guidance provided in Appendix F, Section 3 Turning Lanes, of the VDOT Road Design Manual. This policy should be fully reviewed and understood prior to using this application.

WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)
Major Route \& Direction: Route 743 SB

Note: This spreadsheet is intended to supplement the guidance provided in Appendix F, Section 3 Turning Lanes, of the VDOT Road Design Manual. This policy should be fully reviewed and understood prior to using this application.

WARRANTS FOR LEFT TURN LANES ON TWO-LANE HIGHWAYS
Major Route \& Direction: Route 743 SB

Left Turn Lane NOT WARRANTED

VPH OPPOSING VOLUME	ADVANCING VOLUME			
	5\%	10\%	20\%	30\%
	LEFT TURNS	LEFT TURNS	LEFT TURNS	LEFT TURNS
	40-MPH DESIGN SPEED*			
800	330	240	180	160
600	410	305	225	200
400	510	380	275	245
200	640	470	350	305
100	720	515	390	340
	50-MPH DESIGN SPEED*			
800	280	210	165	135
600	350	280	195	170
400	430	320	240	210
200	550	400	300	270
100	615	445	335	295
	60-MPH DESIGN SPEED*			
800	230	170	125	115
600	290	210	160	140
400	365	270	200	175
200	450	330	250	215
100	505	370	275	240

TABLE 3-2
Source: Adapted from 2011 AASHTO Green Book, Chapter 9, Section 9.7.3, Page 9-132, Table 9-23

* USE DESIGN SPEED IF AVAILABLE, IF NOT USE LEGAL SPEED LIMIT.

Note: This spreadsheet is intended to supplement the guidance provided in Appendix F, Section 3
Turning Lanes, of the VDOT Road Design Manual. This policy should be fully reviewed and understood prior to using this application.

WARRANTS FOR LEFT TURN LANES ON TWO-LANE HIGHWAYS
Major Route \& Direction: Route 743 NB

$\begin{gathered} \text { VPH } \\ \text { OPPOSING } \\ \text { VOLUME } \end{gathered}$	ADVANCING VOLUME			
	5% LEFT TURNS	10% LEFT TURNS	$\begin{gathered} 20 \% \\ \text { LEFT TURNS } \end{gathered}$	30% LEFT TURNS
	40-MPH DESIGN SPEED*			
800	330	240	180	160
600	410	305	225	200
400	510	380	275	245
200	640	470	350	305
100	720	515	390	340
	50-MPH DESIGN SPEED*			
800	280	210	165	135
600	350	280	195	170
400	430	320	240	210
200	550	400	300	270
100	615	445	335	295
	60-MPH DESIGN SPEED*			
800	230	170	125	115
600	290	210	160	140
400	365	270	200	175
200	450	330	250	215
100	505	370	275	240

TABLE 3-2
Source: Adapted from 2011 AASHTO Green Book, Chapter 9, Section 9.7.3, Page 9-132, Table 9-23

* USE DESIGN SPEED IF AVAILABLE, IF NOT USE LEGAL SPEED LIMIT.

Note: This spreadsheet is intended to supplement the guidance provided in Appendix F, Section 3
Turning Lanes, of the VDOT Road Design Manual. This policy should be fully reviewed and understood prior to using this application.

WARRANTS FOR RIGHT TURN TREATMENT (2-LANE HIGHWAY)
Major Route \& Direction: Route 660 EB

Note: This spreadsheet is intended to supplement the guidance provided in Appendix F, Section 3 Turning Lanes, of the VDOT Road Design Manual. This policy should be fully reviewed and understood prior to using this application.

EXHIBIT 5
 Proposed Pavement Marking Plan

EXHIBIT 6

Conceptual Right Turn Lane Improvements

Appendix I-2

Kimley Horn Study

Earlysville Road (Route 743) and Reas Ford Road (Route 660)

Intersection Safety Review

Albemarle County, VA

November 2019

Prepared for:
Virginia Department of Transportation

Prepared by:
Kimley-Horn and Associates, Inc. 1700 Willow Lawn Drive, Suite 200
Richmond, Virginia 23230
P: 804.673.3882

Kimley-Horn Project \#. 117473204
Kimley»"Horn
Table of Contents
1.0 Introduction 3
2.0 Existing Conditions 3
2.1 Field Review 3
2.2 Roadway Characteristics 4
2.3 Traffic Volumes. 5
2.4 Crash Analysis. 5
2.5 Intersection Capacity Analyses 6
3.0 Alternative Development and Analysis. 7
3.2 Alternative 3: Signalized Intersection 9
3.3 Conceptual Design and Planning Level Cost Estimates 11
3.4 Alternative Comparison 13
4.0 Recommendations. 14
List of Figures
Figure 1: Alternative \#2 - Mini-Roundabout 8
List of Tables
Table 1: Intersection Level of Service Criteria 6
Table 2: 2017 Existing Conditions Synchro Results. 7
Table 3: 2017 Alternative 2 (Proposed Mini-Roundabout) SIDRA Results 9
Table 4: M UTCD Warrant 1 Conditions. 9
Table 5: Traffic Signal Warrant Analysis Results 10
Table 6: Traffic Signal Warrant Analysis Results, 11
Table 7: Planning Level Cost Estimates. 12
Table 8: Alternative 1 Benefits and Limitations Summary 13
Table 9: Alternative 2 Benefits and Limitations Summary 14
List of Photographs
Photograph 1: Westbound Approach - Earlysville Road 4
Photograph 2: Eastbound Approach - Earlysville Road. 4
Photograph 3: Northbound Approach - Reas Ford Road 4
Photograph 4: Southbound Approach - Earlysville Forest Drive 4
Appendices
Appendix A: Turning M ovement Count Data
Appendix B: Traffic Signal Warrant
Appendix C: VJUST Results
Appendix D: Level of Service Worksheets

1.0 Introduction

The Virginia Department of Transportation (VDOT) has received complaints and various inquiries from members of the Albemarle County Board of Supervisors, local emergency services personnel, and local residents regarding the perception of safety issues at the Earlysville Road (Route 743) and Reas Ford Road (Route 660) intersection in Albemarle, Virginia. Further discussions between VDOT and Albemarle County led to the need to evaluate the existing conditions at the study intersection. This evaluation will be used to identify potential transportation improvement solutions at the study intersection and to assist VDOT and Albemarle County staff in their discussions with property owners and developers as they convey future plans and projects in the vicinity of the study intersection. Specifically, the intended outcomes of this study were to:
*. Determine the safety and integrity of existing transportation infrastructure

* Provide recommended improvements that improve safety and mobility at the intersection

The purpose of this study was to evaluate potential improvements to the intersection of Earlysville Road and Reas Ford Road to enhance intersection safety and operations. This study focused primarily on safety during typical weekday operations. Traffic operations and access management were also analyzed in order to develop a cohesive recommendation. The limits of this study area are defined by the functional area of the Earlysville Road and Reas Ford Road intersection, which is approximately 500 feet on each approach.

This study will serve as a technical document that describes and illustrates the feasibility of the proposed alternatives as well as the associated potential operational and safety impacts of each.

2.0 Existing Conditions

2.1 Field Review

A field review was conducted on September 3, 2019 to observed existing conditions at the study intersection. Available traffic, crash and asset data was obtained from VDOT and used to document existing conditions. During the field review, the following information was observed and collected.

* Observations of existing roadway geometrics, such as lane designations, signing, striping, posted speed limits, sight distance restrictions, potential design impacts or constraints
* Observations of existing roadway conditions to determine opportunities for improvements to increase safety
* Observations of traffic operations including passenger cars and trucks
* Digital photographs to capture the study area characteristics observed

The existing conditions analyses were developed using the data collected during the field review supplemented by visual observations of the operational characteristics.

2.2 Roadway Characteristics

Earlysville Road is classified as an urban major collector according to VDOT's 2014 Functional Classification map. The section of roadway within the study area is oriented in an east-west direction and is a two-lane, undivided roadway with a paved shoulder ranging from 0 to 10 feet wide and an open ditch cross section. Photographs 1 and 2 show the westbound and eastbound approaches, respectively. The Earlysville Road posted speed limit is 35 M PH near Reas Ford Road. The posted speed limit increases to 45 M PH approximately 300 feet east of the intersection. A Cross Road (W2-1) warning sign is located approximately 525 feet in advance of Reas Ford Road on the eastbound and westbound approaches.

Reas Ford Road is classified as a rural major collector south of Earlysville Road according to VDOT's 2014 Functional Classification map. The roadway is referred to as Reas Ford Road south of Earlysville Road and is referred to as Earlysville Forest Drive north of Earlysville Road. The section of roadway within the study area is oriented in a north-south direction and is a two-lane, undivided roadway with no shoulder and an open ditch cross section. Photographs $\mathbf{3}$ and $\mathbf{4}$ show the northbound and southbound approaches, respectively. The Reas Ford Road/Earlysville Forest Drive posted speed limit is 35 M PH near Earlysville Road. A Stop Ahead (W3-1) warning sign is located approximately 300 feet in advance of Earlysville Road on the northbound approach.

Photograph 1: Westbound Approach - Earlysville Road

Photograph 3: Northbound Approach - Reas Ford Road

Photograph 2: Eastbound Approach - Earlysville Road

Photograph 4: Southbound Approach - Earlysville Forest Drive

The study intersection currently operates as a two-way stop intersection. A variety of land uses are located within the vicinity of the subject intersection, including residential, commercial, and civic (e.g. post office) uses. The northbound and southbound approaches are stop-controlled and the eastbound and westbound approaches are free-flow. Turn lanes are not provided at the study intersection except for a right-turn lane on the westbound approach on Earlysville Road. Intersection lighting and bicycle and pedestrian accommodations are not provided at the study intersection. A Vehicular Traffic (W11-1) warning sign with a Share the Road (W16-1P) plaque is located approximately 250 feet east of the intersection along Earlysville Road.

The required sight distance on a 35 M PH roadway (per the VDOT Road Design Manual) is 390 feet. The sight distance on the northbound approach, looking to the left, is approximately 200 feet, which is below the minimum required. An intersection with a sight distance of 200 feet would only accommodate a design speed of approximately 17 MPH.

2.3 Traffic Volumes

A weekday 12-hour (6:30 AM - 6:30 PM) turning movement count was conducted at the study intersection on Tuesday, November 14, 2017 and included in Appendix A. Weekday AM and PM peak hours were computed to be 7:30-8:30 AM and 5:00-6:00 PM , respectively. Based on the 2018 VDOT published traffic data, the approximate annual average daily traffic (AADT) volume on Earlysville Road is 9,700 vehicles per day (VPD) near Reas Ford Road. The approximate AADT volume on Reas Ford Road is 2,000 VPD to the south of Earlysville Road. The approximate AADT on Earlysville Forest Drive is 1,000 VPD to the north of Earlysville Road.

2.4 Crash Analysis

Crash analysis for the study intersection was conducted using the latest five years of available crash data. Crash reports dating from January 1, 2014 to M ay 31, 2019 were obtained from VDOT. Over the five-year period, twenty crashes were reported within a 500-foot radius of the study intersection.

```
* 2014: }0\mathrm{ crashes
* 2015: }3\mathrm{ crashes
* 2016: }4\mathrm{ crashes
* 2017: }8\mathrm{ crashes
* 2018: }4\mathrm{ crashes
* 2019: }1\mathrm{ crash
```

Overall, there were no noteworthy crash patterns identified at the study intersection. The following subsections provide additional information associated with the twenty total crashes that occurred at the study intersection.

Crash by Type

> A majority of crashes (40\%) were angle collisions. However, these crashes were divided between the various approaches and turning movements.
> The remaining 12 crashes were equally divided between rear-end, fixed object, and other.

Crashes by Time of Day

* The majority of crashes (13 crashes or 65%) occurred during off peak periods.
* The majority of the peak period crashes (5 of the 7 total peak period crashes) occurred during the PM peak period.

Crash Severity

No fatal crashes occurred at the study intersection. Ten (50\%) of the crashes resulted in an injury. Three of these were Type A crashes, six were Type B, and one was Type C.

Weather Conditions

Eighteen of the twenty crashes occurred during clear weather conditions at the study intersection.

Light Conditions

Sixteen (80%) of the twenty crashes occurred during daylight conditions at the study intersection.

2.5 Intersection Capacity Analyses

Capacity analyses allow traffic engineers to assess the operational conditions and identify the impacts of traffic on the surrounding roadway network. The Transportation Research Board's (TRB) Highway Capacity M anual (HCM) methodologies govern the methodology for evaluating capacity and the quality of service provided to road users traveling through a roadway network. There are six letter grades for Levels of Service (LOS) ranging from A to F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions.

Intersection level of service is defined in terms of delay (seconds per vehicle), a measure of driver discomfort, frustration, fuel consumption, and lost travel time. Error! Reference source not found summarizes the delay associated with each unsignalized and roundabout intersection LOS category.

Table 1: Intersection Level of Service Criteria

LOS	Intersection Delay (sec/veh)	
	Unsignalized	Roundabout/ Signalized
A	$0-10$	$0-10$
B	$>10-15$	$>10-20$
C	$>15-25$	$>20-35$
D	$>25-35$	$>35-55$
E	$>35-50$	$>55-80$
F	>50	>80
Source: Transportation	Research Board, Highway Capacity Manual 2000	

* Source: Transportation Research Board, Highway Capacity M anual 2000

The unsignalized study intersection was analyzed using Synchro based on methodologies in the HCM 6. Existing conditions Synchro delay and LOS results are shown in Error! Reference source not found. Synchro output sheets are included in Appendix D.

The stop-controlled approaches (northbound and southbound) currently experience moderate to long delays in the peak hours as shown in Table 5. It is typical for stop sign controlled side streets intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay.

Table 2: 2017 Existing Conditions Synchro Results

Time of Day	Delay (sec/ veh)	LOS	Delay (sec/veh)	LOS
Lane Group	AM Peak Hour	PM PeakHour		
Earlysville Rd (EB) LTR	0.1	A	0.7	A
Earlysville Rd (WB) LTR	2.8	A	1.0	A
Reas Ford Rd (NB) LTR	37.5	E	35.5	E
Earlysville Forest Dr (SB) LTR	130.4	F	34.8	D

3.0 Alternative Development and Analysis

All traffic operations analysis for alternatives analysis was conducted using 2017 volumes. The VDOT Junction Screening Tool (VJUST) version 1.02 was used to develop potential alternatives to consider for analysis. Results from the VJUST analysis are included in Appendix C. After consideration of the VJUST results, a roundabout was selected as an alternative to further evaluate. Traditional intersection configuration analyses were conducted using Synchro while roundabout analyses were conducted using SIDRA.

The following alternatives were evaluated:

* Alternative 1: Low-Cost Countermeasures
* Alternative 2: M ini-Roundabout
* Alternative 2: Signalized Intersection

3.1.1 Alternative 1 (Low-Cost Countermeasures)

Alternative 1 consists of the implementation of multiple low-cost countermeasures for stop-controlled intersections. Alternative 1 does not improve any access management issues, operations issues, nor heavily improve any safety issues, but would reduce potential risks within the intersection. According to FHWA, this alternative "involves deploying a group of multiple low-cost countermeasures, such as enhanced signing and pavement markings...to increase driver awareness and recognition of the intersection and potential conflicts." The following treatments are recommended.

* Earlysville Road
- Doubled up (left and right), oversized advance intersection (W2-1) warning signs, with street name sign (W16-8aP) plaques
- Enhanced pavement markings that delineate through lane edge lines
* Reas Ford Road/ Earlysville Forest Drive
- Doubled up (left and right), oversized advance "Stop Ahead" (W3-1) intersection warning signs
- Doubled up (left and right), oversized Stop (R1-1) signs
- Retroreflective sheeting on sign posts
- Properly placed stop bar
- Removal of any vegetation or obstruction that limits sight distance

The implementation of these low-cost countermeasures at stop-controlled intersections can result in a 10\% reduction in injury and fatal crashes, based on Crash Reduction Factors (CRF).

Traffic conditions are not expected to change with the implementation of Alternative 1, therefore a separate traffic operations analysis was not conducted.

-Figure 1
 3.1.2 Alternative 2 (Mini-Roundabout)

As shown in Error! Reference source not found., Alternative 2 consists of the reconfiguration of the subject intersection to a mini-roundabout. In addition to an improvement to intersection capacity, the proposed roundabout would potentially improve safety as well by reducing the number of conflict points in the intersection. The installation of a roundabout can expect a 72% reduction in all intersection related crashes. The proposed roundabout would also mitigate sight distance deficiency on the northbound approach and act as a traffic calming measure on all approaches of the intersection. The analysis herein was based on minimum design requirements found in the VDOT Road Design M anual - Appendix F and the National Cooperative Highway Research Program (NCHRP) Report 672: Roundabouts: An Informational Guide, Second Edition, 2010.

Figure 1: Alternative \#2-Mini-Roundabout

The roundabout alternative was analyzed using SIDRA, which uses the HCM 6 traffic signal delay thresholds to determine LOS. To evaluate the study intersection, existing traffic volume data was used in conjunction with existing and proposed geometric data to determine the LOS.

The construction of a roundabout at the study intersection is expected to improve traffic operations for the northbound and southbound approaches while still maintaining short to moderate levels of delay along the eastbound and westbound approaches. The increase in control delay for the eastbound and westbound approaches is to be expected when converting free-flow movements to yield-controlled. Table 6 summarizes the delay for Alternative 2. Additional information is provided in Appendix D.

Table 3: 2017 Altemative 2 (Proposed Mini-Roundabout) SIDRA Results

Time of Day	Delay (sec/ veh)	LOS	Delay (sec/veh)	LOS
Lane Group	AM Peak Hour	PM Peak Hour		
Earlysville Rd (EB) LTR	20.5	C	5.8	A
Earlysville Rd (WB) LTR	5.3	A	9.7	A
Reas Ford Rd (NB) LTR	5.1	A	17.9	C
Earlysville Forest Dr (SB) LTR	27.2	D	6.5	A

3.2 Alternative 3: Signalized Intersection

A signal warrant analysis was conducted to determine if a signal is justified at this location. The results of that analysis, described further below, did not support the installation of a traffic signal, therefore no additional traffic operations or safety analysis was performed and this alternative was not carried forward for further design or cost considerations.

3.2.1 Traffic Signal Warrant

A traffic signal warrant analysis was performed using the 2017 turning movement count data collected at the study intersection. Traffic signal warrants were performed based on methodologies defined in the M anual of Uniform Traffic Control Devices (MUTCD, 2009 edition). This approach is consistent with methods used by VDOT to determine whether a traffic signal should be considered at an intersection. Nine warrants are documented in the MUTCD, which provides guidance on justification of traffic signal installation. The results of the nine warrants are provided below.

Warrants 1 through 3

Warrant 1 (Eight-Hour Vehicular Volume), Warrant 2 (Four-Hour Vehicular Volume), and Warrant 3 (Peak Hour) were evaluated at the study intersection. Warrant 1 contains three conditions, which are shown in Error! Reference source not found.. The results of Warrants 1 through 3 are shown in Error! Reference source not found..

Table 4: MUTCD Warrant 1 Conditions

Warrant 1	Eight-Hour Vehicular Volume
Condition A	Minimum Vehicular Volume
Condition B	Interruption of Continuous Traffic
Combination	Combination of Condition A and Condition B

Table 5: Traffic Signal Warrant Analysis Results

	Warrant 1A	Warrant 1B	Warrant 1 Combination	Warrant 2	Warrant 3
2017 Existing	Not Met (1 of 8 hours satisfied)	Not Met (5 of 8 hours satisfied)	Not Met (4 of 8 hours satisfied)	Not Met (3 of 4 hours satisfied)	Met

Under existing traffic conditions, the study intersection is not projected to meet traffic signal Warrant 1 or Warrant 2. At this time, only Warrant 3 is met. Although Warrant 3 is met, a traffic signal would not be warranted at this intersection without satisfying the eight-hour volumes. Traffic signal warrant worksheets are included in Appendix B. Should existing traffic volumes, patterns or land uses change in the vicinity of the intersection, a traffic signal warrant analysis may need to be conducted to consider the future conditions.

Warrant 4

Warrant 4 (Pedestrian Volume) is intended for applications where traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street. To meet the requirements for Warrant 4, the pedestrian volume crossing the major street along with the major street traffic volume at an intersection (or midblock location) during an average day are plotted against two charts provided in the MUTCD. On the first chart, each of any four hours must exceed the warrant, while on the second chart any one hour must exceed the warrant. No pedestrians were counted at the subject intersection during the 12 -hour traffic count conducted; therefore, the pedestrian volume requirements of Warrant 4 were not met.

Warrant 5

Warrant 5 (School Crossing) is intended for application where school children crossing the major street are the principal reason to install a traffic signal. To meet the requirements for Warrant 5 , there must be a minimum of 20 students during the highest crossing hour across the major street. There are no schools near the study intersection, and the counted volume of pedestrians does not meet the 20 -student minimum. Therefore, Warrant 5 was not met.

Warrant 6

Warrant 6 (Coordinated Signal System) is applicable in situations where a coordinated signal system necessitates the installation of a traffic control signal to maintain proper platooning of vehicles. The subject intersection is not located within a coordinated network; therefore, Warrant 6 was not met.

Warrant 7

Warrant 7 (Crash Experience) is intended for application where the severity and frequency of crashes are the principle reasons to consider installing a traffic control signal. To meet the requirements for Warrant 7, there must be a history of crashes amounting to at least five crashes within the past year resulting in personal injury or property damage above the reporting thresholds. These crashes must also be of such a type that is correctable by the installation of a traffic signal. An adequate trial of alternatives must also have been attempted. In addition to meeting these criteria, certain vehicular and pedestrian volumes must be present for eight hours of the day. Based on a review of the crash data from 2015 through 2019, only one year had five preventable crashes occur at the subject intersection and the remaining years all had less than five. Additionally, these five crashes were not all susceptible to correction by a traffic signal; therefore, Warrant 7 was not met.

Warrant 8

Warrant 8 (Roadway Network) is intended for application where some intersections might be justified to encourage concentration and organization of traffic flow on a roadway network. To meet the requirements for

Warrant 8, the M UTCD states that the intersection must have an existing or immediately projected entering volume of at least 1,000 vehicles per hour during the peak hour of a typical weekday and five-year projected traffic volumes that meet one or more of Warrants 1, 2, and 3 during an average weekday or 1,000 vehicles per hour for each of any five hours of a typical weekend (Saturday or Sunday). The current traffic volumes exceed 1,000 vehicles per hour, but future traffic volumes were not projected. If the projected traffic volumes meet one or more of Warrants 1, 2, and 3 during an average weekday, then Warrant 8 may be met in the future.

Warrant 9

W arrant 9 (Intersection Near a Grade Crossing) is intended for use at intersections where the conditions described in the other eight traffic signal warrants are not met. To meet the requirements of Warrant 9, proximity to a railroad grade crossing on an intersection approach controlled by a Stop or Yield sign is the principal reason to consider installing a traffic control signal. As no grade crossings exist within 140 feet of the subject intersection, W arrant 9 was not evaluated.

3.2.2 Traffic Signal Warrant Results

Based on an analysis of the M UTCD Traffic Signal Warrants 1 through 9, a traffic signal is not warranted at the Earlysville Road and Reas Ford Road intersection. VDOT does not support the installation of traffic signals for just meeting peak hour warrants. Error! Reference source not found. provides a summary of the results of Warrants 1 through 9.

Table 6: Traffic Signal Warrant Analysis Results

Warrants								
1	2	3	4	5	6	7	8	9
Not M et	Not M et	M et	Not Met	Not Met				

3.3 Conceptual Design and Planning Level Cost Estimates

The approximate planning level cost estimate is based a combination of PCES, the 2015 version of Transportation and M obility Planning Division Statewide Planning Level Cost Estimate Spreadsheet, quantity take-offs, and recent bid costs. Table 7 includes a cost breakdown of the roadway; construction contingency; construction, engineering, and inspection (CEI); preliminary engineering (PE); and right-of-way acquisition and utility relocation costs. The planning level cost estimate is preliminary and is not based on design.

3.3.1 Alternative 1 (Low-Cost Countermeasures)

Based on a review of available right-of-way near the intersection, it is anticipated Alternative 1 will not require the acquisition of additional right-of-way. It is assumed the proposed improvements could be delivered with maintenance staff resources, so it is assumed to be a no-plan project.

The Right-of-Way Acquisition and Utility Relocation Costs for Alternative 1 (Low-Cost Countermeasure) are shown as $\$ 0$ since these improvements should not impact right-of-way or utilities.

It is assumed that these improvements may be considered maintenance activities.

3.3.2 Alternative 2

For Alternative 2, depicted in Figure 1, it was determined that the construction of a mini-roundabout, with an inscribed diameter between 80 feet, would lessen the impacts to existing right-of-way when compared to a singlelane roundabout, with an inscribed diameter between 90-120 feet. Although the study intersection lies within prescriptive right-of-way, these additional right-of-way impacts can alter the timeframe for implementation and estimated planning level cost.

Prescriptive right-of-way is right-of-way in perpetuity for the use of a state-maintained roadway and its continual maintenance. The right-of-way measures 15 feet from either side of the centerline of the roadway. Typically, the purchase of the 15 feet of right-of-way has zero value but would still require a signed acquisition from the adjacent parcel owner.

A modified mini-roundabout with shoulder, as opposed to curb and gutter, was analyzed, but it was determined that the shoulder and ditch design would require additional right-of-way and utility impacts. These impacts were determined to be larger than the cost of the proposed curb and gutter and drainage features associated with the selected mini-roundabout. A single-lane roundabout with shoulders was not analyzed as the VDOT Road Design M anual states that single-lane roundabouts shall be provided with curb and gutter on the outside of the circulatory roadway.

The following considerations should be considered during the design phase of the proposed mini-roundabout (Alternative 2).

* Truck turning movements must be accommodated during mini-roundabout design. A traversable center island and additional pavement for acute right turns will be required with a mini-roundabout to prevent truck over tracking.
* A school bus was used as a design vehicle for developing this alternative. This leads to a larger inscribed diameter and circulatory lane width than if a passenger car was used.
* All existing right-of-way in the area is prescriptive.
* Existing access to adjacent parcels and driveway locations should be able to be maintained in a proposed roundabout configuration. The concrete splitter island on the eastbound approach on Earlysville Road may need to be shortened and supplemented with pavement marking to allow turning movements into Rivanna Community Church and Earlysville Exchange.
* The proposed mini-roundabout is likely to increase the impervious (paved) area at one or more drainage outfalls of the study intersection. Current drainage and stormwater management regulations will need to be considered.

For Alternative 2 (M ini-Roundabout) the Right-of-Way Acquisition and Utility Relocation cost is made up of nearly 60% utility relocations. The utilities that have been estimated to be relocated include 3 distribution towers and 2 service poles. These have been estimated to be relocated due to the grading and drainage needed for the miniroundabout.

Table 7: Planning Level Cost Estimates

	Alternative 1 Low-Cost Countermeasures (2019 dollars)	Alternative 2 Mini-Roundabout (2019 dollars)
Construction Cost (with 25\% Contingency)	$\$ 60,000$	$\$ 1,066,000$
Construction, Engineering, \& Inspection (CEI)	$\$ 10,000$	$\$ 178,000$
Preliminary Engineering	$\$ 0$	$\$ 235,000$
Right-of-Way Acquisition and Utility Relocation	$\$ 0$	$\$ 474,000$
Project Total	$\$ 70,000$	$\$ 1,998,000$

3.3.3 Additional Design Recommendations

Access-managements recommendations may be designed within the influence area of the study intersection to improve the safety and flow of traffic along Route 743 and Route 660. These following recommendations should
be considered in the further to supplement Alternative 1 and Alternative 2 in order to provide adequate intersection/access spacing in accordance with VDOT's M inimum Spacing Standards for Commercial Entrances, Intersections, and M edian Crossovers from the VDOT Road Design M anual.

* Commercial access to Earlysville Exchange and VIP Customs

- A better defined commercial access with new curb and gutter in the west quadrant of the study intersection.
- Potential impacts to parking access for Earlysville Exchange and VIP Customs may trigger additional right-of-way and zoning impacts
- Potential impacts to the flow of travel through each site may be mitigated by a one-way drive aisle with parallel parking and right-in only and right-out only entrances to the site.
- It is assumed that these improvements are minor and could be covered by a Minimal-Plan Project. However, due to the impacts to the site parking, the right-of-way impacts would be considered moderate.

3.4 Altemative Comparison

Based on an evaluation of the proposed alternatives analysis provided herein, the study team developed the following comparative conclusions. Alternative 2 (mini-roundabout), operationally performs with less vehicle delay than Alternative 1 (low-cost countermeasures). Both Alternative 1 and Alternative 2 provide positive crash reduction; however, Alternative 2 provides a greater benefit. Alternative 2 provides overall greater safety and operational benefits to the traveler.

A summary of the pros and cons of Alternative 1 and Alternative 2 is provided in Table 8 and Table 9, respectively.
Table 8: Altemative 1 Benefits and Limitations Summary

Improvement Benefits	Improvement Limitations
No right-of-way required	Does not improve traffic operations
* Improves safety	Does not help reduce vehicle speeds on Earlysville
$-\quad$ 10\% reduction in injury and fatal crashes	Road (traffic calming)
- Increases driver awareness and recognition of the	
intersection and potential conflicts	

Table 9: Altemative 2 Benefits and Limitations Summary

| Improvement Benefits | Improvement Limitations |
| :--- | :--- | :--- |
| * | Right-of-way required |
| Improves safety | Constilies impacted |
| Requires vehicles to slow down before entering the | |
| roundabout (traffic calming) | |
| Improves northbound sight distance for Reas Ford | |
| Road approach | |
| Accommodates school buses, fire trucks, and other | |
| large vehicles | |

4.0 Recommendations

Alternative 2 (mini-roundabout) is recommended for construction at the Earlysville Road and Reas Ford Road/Earlysville Forest Drive intersection to improve both the safety and operations of the intersection. However, should funding constraints exist,. Alternative 1 (low cost countermeasures) should be implemented as a near-term improvement to reduce crash risk within the intersection.

Public outreach should be performed within the local area to educate the public on the benefits of a roundabout and to educate drivers the rules of a roundabout (http://www.virginiadot.org/innovativeintersections/).

Appendix A: Turning Movement Count Data

Intersection: Rt 743 and Rt 660
Start Date: 11/14/2017
Start Time: 6:30:00 AM

County: Albemarle

Appendix B: Traffic Signal Warrant

Route 743 and Route 660
TRAFFIC SIGNAL VOLUME WARRANT ANALYSIS
Based on 2009 MUTCD

Appendix C: VJUST Results

Intersection Results					
					Notes
Type	Dir	$\begin{gathered} \text { Maximum } \\ \text { V/C } \end{gathered}$	Accommodation Compared to Conventional	Weighted Total Conflict Points	
50 Mini Roundabout	-	0.77		8	
75 Mini Roundabout	-	0.76		8	
Roundabout	-	0.56		8	
Two-Way Stop Control	-	0.35		48	

Information

Congestion	The maximum v/c ratio represents the worst v/c of all zones that make up an intersection.
Pedestrian	Compares the potential of each design to accommodate pedestrians based on safety, wayfinding, and delay. Potential is qualitatively defined as better (+), similar (blank cell), or worse $(-)$ than a conventional intersection or traditional diamond interchange.
Safety	Weighted Total $=(2 \times$ Crossing Conflicts $)+$ Merging Conflicts + Diverging Conflicts

VDOT Junction Screening Tool

 Input Worksheet| Project Title: | Earlysville Intersection Safety Review |
| ---: | :---: |
| E-W Facility: | Route 660 (Reas Ford Road) |
| N-S Facility: | Route 743 (Earlysville Road) |
| Date: | September 11, 2019 |

Traffic Volume Demand					
Direction	Volume (veh/hr)				
	U-Tur	/ Left	Through	Right	Truck
			V	\square	Percent (\%)
Eastbound			3	12	2.00\%
Westbound			2	99	2.00\%
Northbound			625	50	2.00\%
Southbound			126	12	2.00\%
Adjustment Factor	0.80	0.95		0.85	-
Suggested	U-0.8	L-0.95		0.85	-
Truck to PCE Factor			Suggested = 2.00		2.00
Critical Lane Volume			1600		

Equivalent Passenger Car Volume				
	Volume (pc/hr)			
	U-Turn / Left	Through	Right	Approach
	67	3	12	82
Westbound	23	2	101	126
Northbound	8	638	51	697
Southbound	37	129	12	178

Notes:	
Left-turn Adjustment Factor	Conversion of left-turning vehicles to equivalent through vehicles
Right-turn Adjustment Factor	Conversion of right-turning vehicles to equivalent through vehicles
U-turn Adjustment Factor	Conversion of U-turning vehicles to equivalent through vehicles
Truck to PCE Factor	1 truck = X Passenger Car Equivalents
Critical Lane Volume Sum Limit	Saturation value for critical lane volume sum at an intersection

VDOT Junction Screening Tool

Possible Configurations
Indicate with a " Y " or " N " if each intersection or interchange configuration should or should not be considered. Use the information links for guidance. Then, click the "Show/Hide Configurations button" to hide the worksheets for the configurations that will not be considered.

VDOT Junction Screening Tool

Directional Questions and Base Lane Configurations
Before entering a base number of through lanes for each direction, answer all applicable directional question for each intersection or interchange configuration selected for consideration. Navigate to the lane configuration worksheet for example diagrams, if provided.

Intersections	Question	Direction
Bowtie	N/A	N/A
Continuous Green-T	N/A	N/A
Echelon	N/A	N/A
Median U-Turn	N/A	N/A
Partial Displaced Left Turn	N/A	N/A
Partial Median U-Turn	N/A	N/A
Restricted Crossing U-Turn	N/A	N/A
Single Loop	N/A	N/A
Split Intersection	N/A	N/A
Interchanges		Question
All	N/A	Direction

Base Number of Through Lanes

Enter a base number of through lanes for each direction. The number of through lanes entered will populate on each non-roundabout lane configuration worksheet. This tool also allows the user to enter the number of through lanes on the lane configuration worksheets directly. This base number may be overwritten on individual lane configuration worksheets. Turn lanes, shared lanes, and channelized lanes must still be entered in each lane configuration worksheet.

Eastbound	1
Westbound	1
Northbound	1
Southbound	1

Appendix D: Level of Service Worksheets

AM Peak Period

MOVEMENT SUMMARY

\$ Site: 101 [Route 743 and Route 660]

Earlysville Safety Analysis
Site Category: (None)
Roundabout

Site Level of Service (LOS) Method: Delay \& v/C (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F vill resull if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection)
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6)
Roundabout Capacily Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

PM Peak Period

MOVEMENT SUMMARY

Site: 101 [Route 743 and Route 660]

Earlysville Safety Analysis
Site Category: (None)
Roundabout

Site Level of Service (LOS) Method: Delay \& vic (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab)
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F vill result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
intersection and Approach LOS values are based on average delay for all movements (vic not used as specified in HCM 6).
Roundabout Capacity Model SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

HCM 2010 TWSC
3: Reas Ford Rd (Route 660)/Earlysville Forest Dr (Route 660) \& Earlysville Rd (Route 743)

Intersection												
Int Delay, s/veh	16.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「		\$			\$	
Traffic Vol, veh/h	8	625	50	36	126	12	23	2	99	66	3	12
Future Vol, veh/h	8	625	50	36	126	12	23	2	99	66	3	12
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	100	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	66	81	56	60	90	75	52	50	79	71	75	60
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	772	89	60	140	16	44	4	125	93	4	20

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.1	2.8	37.5	130.4
HCM LOS		E	F	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	277	1424	-	-781	-	-125	
HCM Lane V/C Ratio	0.627	0.009	-	-0.077	-	-0.936	
HCM Control Delay (s)	37.5	7.5	0	-	10	0	-130.4
HCM Lane LOS	E	A	A	-	A	A	-
HCM 95th \%tile Q(veh)	3.9	0	-	-	0.2	-	-
H.1							

HCM 2010 TWSC
3: Reas Ford Rd (Route 660)/Earlysville Forest Dr (Route 660) \& Earlysville Rd (Route 743)

Approach	EB	WB	NB	SB
HCM Control Delay, s	0.7	1	35.5	34.8
HCM LOS		E	D	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1
Capacity (veh/h)	246	885	-	-1324	-	-172	
HCM Lane V/C Ratio	0.538	0.023	-	-0.079	-	-0.304	
HCM Control Delay (s)	35.5	9.2	0	-	8	0	-34.8
HCM Lane LOS	E	A	A	-	A	A	-
HCM 95th \%tile Q(veh)	2.9	0.1	-	-	0.3	-	-
D	1.2						

[^0]: *Rev. 1/15

[^1]: *Rev. 1/15

[^2]: *Rev. 1/15

[^3]: *Rev. 1/15

[^4]: *Rev. 1/15

[^5]: *Rev. 1/15

[^6]: *Rev. 1/15

[^7]: *Rev. 1/15

