Form 2

Application Package Page 1 of 74 Page_____ of _____

Construction Repair Voluntary Upgrade Certification Subdivision Property Location: 911 Address: 5055 Walnut Level Road City: Crozet Lot Section Subdivision Gity: Crozet OPIN or Tax Map # 14-10, 14-10Axi, 14-10 C, 14-10F. 14-3A, 14-30 Health Dept ID # Latitude Longitude Longitude	OSE/PE R	eport For:	·		
911 Address: 5055 Walnut Level Road City: Crozet Lot					
Lot					
GPIN or Tax Map # 14-10, 14-10 Axx, 14-10 F, 14-3A, 14-3b Health Dept ID # Latitude Longitude Applicant or Client Mailing Address: Name: Name: Inisfee, Inc. Street: 5505 Walnut Level Road City: Crozet Street: 5505 Walnut Level Road City: Crozet State VA Zip Code 22932 Prepared by: OSE Name OSE Name License # Address	911 Address:5055 Walnut Level Road		City: Crozet		
Latitude					
Applicant or Client Mailing Address: Name: Innisfee, Inc. Street: 5505 Walnut Level Road City: Crozet State VA Zip Code 22932 Prepared by: OSE Name License #	GPIN or Tax Map # BPIN or Tax Map #	^{3b} Health Dept ID	#		
Name: Innisfee, Inc. Street: 5505 Walnut Level Road City: Crozet State VA Zip Code 22932 Prepared by: OSE Name	Latitude	Longitude			
Street: 5505 Walnut Level Road City: Crozet	Applicant or Client Mailing Address:				
City: Crozet State VA Zip Code 22932 Prepared by: OSE Name	Name: Innisfee, Inc.				
Prepared by: OSE Name	Street:5505 Walnut Level Road				
Prepared by: OSE NameLicense #	City: Crozet	_State	Zip Code		
Address					
City	OSE Name	Licen	ise #		
PE Name David J. Maciolek License # 0402043224 Address 3452 Bleak House Rd.	Address				
Address 3452 Bleak House Rd. City Earlysville State VA Zip Code 22936 Date of Report 23 Mar. 2023 Date of Revision #1	City	State	Zip Code		
City Earlysville State VA Zip Code 22936 Date of Report 23 Mar. 2023 Date of Revision #1	PE Name David J. Maciolek	Licens	e #		
Date of Report 23 Mar. 2023 Date of Revision #1	Address 3452 Bleak House Rd.				
OSE/PE Job # Date of Revision #2 Contents/Index of this report (e.g., Site Evaluation Summary, Soil Profile Descriptions, Site Sketch, Abbreviated Design, etc.) OSE/PE Cover Page Appendix B - Process Design Calculations AOSS Construction Permit Application Appendix C - Collection System Design AOSS Engineering Report, 14 Aug. 2024 Appendix D. Drainfield Calc's Appendix E. Soils Info. Appendix A - Flow & Load calculations Attachment 1 - Construction Documents Certification Statement I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of</i> the Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), the Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit Certification letter subdivision approval be(select on	City Earlysville	State VA	Zip Code		
Contents/Index of this report (e.g., Site Evaluation Summary, Soil Profile Descriptions, Site Sketch, Abbreviated Design, etc.) OBEPE Cover Page Appendix B - Process Design Calculations AOSS Construction Permit Application Appendix C - Collection System Design AOSS Engineering Report, 14 Aug. 2024 Appendix D. Drainfield Calc's Appendix E. Soils Info. Appendix A - Flow & Load calculations Attachment 1 - Construction Documents I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit Certification letter subdivision approval be (select one) Issued Desecting (sele	Date of Report 23 Mar. 2023	Date of R	evision #1		
OSE/PE Cover Page Appendix B - Process Design Calculations AOSS Construction Permit Application Appendix C - Collection System Design AOSS Engineering Report, 14 Aug. 2024 Appendix D. Drainfield Calo's Appendix E. Soils Info. Appendix A - Flow & Load calculations Attachment 1 - Construction Documents Certification Statement I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently posses any professional license required by the laws and regulations of the conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit Certification letter subdivision approval be (select one) Issued					
AOSS Construction Permit Application Appendix C- Collection System Design AOSS Engineering Report, 14 Aug. 2024 Appendix D. Drainfield Calc's Appendix E. Soils Info. Appendix A - Flow & Load calculations Attachment 1 - Construction Documents Certification Statement I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit certification letter subdivision approval be (select one) Issued					
Appendix A - Flow & Load calculations Attachment 1 - Construction Documents Certification Statement I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit certification letter subdivision approval be (select one) Issued					
Certification Statement I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit Certification letter subdivision approval be (select one) Issued	AOSS Engineering Report, 14 Aug. 2024	AOSS Engineering Report, 14 Aug. 2024 Appendix D. Drainfield Calc's Appendix E. Soils Info.			
I hereby certify that the evaluations and/or designs contained herein were conducted in accordance with the <i>applicable provisions of the</i> Sewage Handling and Disposal Regulations (12 VAC5-610), the Private Well Regulations (12 VAC5-630), <i>the</i> Regulations for Alternative Onsite Sewage Systems (12VAC5-613) and all other applicable laws, regulations and policies implemented by the Virginia Department of Health. I further certify that I currently possess any professional license required by the laws and regulations of the Commonwealth that have been duly issued by the applicable agency charged with licensure to perform the work contained herein. The potential for both conventional and alternative onsite sewage systems has been discussed with the owner/applicant. The work attached to this cover page has been conducted under an exemption to the practice of engineering, specifically the exemption in Code of Virginia Section 54.1-402.A.11 I recommend that a (select one): construction permit a certification letter b subdivision approval b be (select one) Issued b	Appendix A - Flow & Load calculations Attachment 1 - Construction Documents				
OSE/PE Signature And A Months Date 14 Aug. 2024					

Application Package Page 2 of 74

Commonwealth of Virginia Application for: Sewage System DWater Supply	VDH Use only Health Department ID# Due Date	
Owner Innisfree, Inc.	Phone Office: (434)823-5400	
Mailing Address 5505 Walnut Level Road Crozet, VA 22932	Phone	
Agent David Maciolek, P.E. Aqua Nova Engineering, PLC	Fax (434)823-5027 Phone 434-249-4497	
Mailing Address 3452 Bleak House Rd.	Phone Phone	
Earlysville, VA 22936	Fax	
Site Address 5055 Walnut Level Road		
Crozet, VA 22932	Email David@AquaNovaEngineering.com	
Directions to Property: From Emmet St,. WNW 2.3 mi. on Barracks Rd. Contin. NW 9 mi. on Garth Rd (State Rte 601), NNW 4 mi. on State Rte 810. Straight onto Walnut Level, 1.5 mi.	
Subdivision Section		
Tax Map <u>14-10, 14-10Axx, 14-10 C, 14-10F</u> , Other Property Identification <u>TMP 14-1</u>	3A& B Dimension/Acreage of Property ²³² +/- ac	
Sewage System		
Type of Approval: Applicants for new construction are advised to apply f	for a cortification latter to determine if land is	
suitable for a sewage system and to apply for a construction permit (valid f		
Certification Letter Construction Permit Volunta	ry Upgrade 🔲 Repair Permit	
Proposed Use:		
Single Family Home (Number of Bedrooms) Multi-Fam Other (describe) Community Including: 16 Residences Office, Work shows	mily Dwelling (Total Number of Bedrooms) ops and Community Center	
Basement? Yes No Walk-out Basement? Yes No		
Conditional permit desired? Yes No If yes, which conditions	s do you want?	
Reduced water flow Limited Occupancy Intermittent or seasonal	l use	
Do you wish to apply for a betterment loan eligibility letter? Ves	There is a \$50 fee for determination of eligibility.	
Water Supply		
Will the water supply be Public or Private? Is the water	supply Existing or Proposed?	
	the old well be abandoned? Yes No	
Will any buildings within 50' of the proposed well be termite treated? \Box Yes \Box No		
All Applicants	—	
	OSE/PE package attached? ■Yes ■No	
Is this property indeed to serve as your (owners) principal place of residence		
In order for VDH to process your application for a sewage system you must attache		
supplies, a plat of the property is recommended and a site sketch is required. The s proposed buildings and the desired location of your well and/or sewage system. W building location and the proposed well and sewage sites must be clearly marked a	site sketch should show your property lines, actual and/or /hen the site evaluation is conducted the property lines,	
I give permission to the Virginia Department of Health to enter onto the property d processing this application and to perform quality assurance checks of evaluations Evaluator or Professional Engineer as necessary until the sewage disposal system a approved.	and designs certified by a private sector Onsite Soil	
Church Matto	14 Aug. 2024	
Signature of Owner/ Agent	Date	

This form contains personal information subject to disclosure under the Freedom of Information Act. Revised 12/1/2014

Innisfree Village

Alternative On-site Sewage System ENGINEERING REPORT

14 August 2024

This Alternative Onsite Sewage System (AOSS) design is submitted under the provisions of Section 32.1-163.6 of the Virginia Administrative Code and to the engineer's knowledge, complies with the requirements therein.

Table of Contents

Overview1
Engineering Project History1
Design Criteria
Wastewater Sources, Flows and Characteristics
Onsite Sewage System Overview
New Collection system
Centralized Treatment7
Overview7
Effluent Total Nitrogen Requirements7
Primary Treatment and Flow Equalization
Secondary treatment
Alkalinity Addition
Tertiary Treatment
System Control Panel
Centralized Effluent Dispersal
General Soils Evaluations 12
Drainfield Soils Evaluations 12
Design Hydraulic Application Rates 14
Drainfield Design
Low Pressure Dosing System Details
Controls System and Remote Access
Hydraulic Controls and Overflows
REFERENCES

List of Tables

Table 1.	Project Information and Projected Wastewater Flow	1
Table 2.	Sewage Generation Rate by Source	2
Table 3.	Water Usage - Residential Buildings with Flow Meters (a)	3
Table 4.	AOSS System – Final Design Influent and Effluent Parameters	4
Table 5.	Sewer Design Summary	6
Table 6.	Nitrogen Dilution Model Summary	7
Table 7.	Drainfield Subareas Soil Texture and Ksat Results 1	4
Table 8.	Primary Drainfield Design - Characteristics and Capacity 1	6
Table 9.	Reserve Drainfield Design – Characteristics and Capacity 1	7

List of Appendices

Appendix A	Design Flow and Loading Calculations Flow Equalization Volume Calculations Detailed Water Use Data
Appendix B	AdvanTex Treatment System Design Calculations Stage Three Treatment Biofilter calculations Total Nitrogen Dilution Model Results
Appendix C	Sewer System Design Calculations
Appendix D	LPD Dispersal System Design LPD Detail Calculations (Using OSI Pump Select calculation tool) Groundwater Mounding Model Results
Appendix E	Soils Evaluation Data- Soil Profile Descriptions and Ksat Testing Results Summary Ksat Testing Field Data

OVERVIEW

The purpose of this document is to present the design criteria and design information for wastewater treatment and disposal for the alternative onsite sewage system (AOSS) to manage sewage for Innisfree Village (Innisfree). Innisfree is a residential community for adults with mental disabilities located in western Albemarle County, north of Crozet, VA. Sewage from buildings at Innisfree Village (Innisfree) is currently managed using conventional onsite sewage systems (COSS) consisting of septic tanks with gravity drainfields.

The Project Purposes are summarized below:

- Replace most of the existing COSS's with a centralized wastewater collection treatment and disposal system permitted as an Alternative Onsite Sewage System (AOSS) through the Virginia Department of Health (VDH). This will provide reliable long-term management of the sewage from the residences and other important buildings.
- Disperse highly treated effluent in a drainfield that is downgradient from the cluster of gardens and drinking water wells in the upper Village area.
- Remove trace organic compounds and nitrogen from the effluent before discharge to the soils to protect the groundwater resources.

Project Information		
Owner Contact:	Aurore Hutter Innisfree Village, Inc.	
Project Location: 5505 Walnut Level Road Crozet, VA 22932		
Wastewater Source, Flows and Disposal/Re-use		
Wastewater Source:	Residential Buildings, Community Center Office and Workshop Buildings	
Design Flow (Peak Effluent)	5,500 GPD	
Disposal:	Low pressure dosed dispersal trench system consisting of three Cells	

Table 1. Project Information and Projected Wastewater Flow

Engineering Project History

An evaluation of the overall water and sewer systems was performed by Inboden Environmental Services, Inc. (IES) in 2021. The conclusion of this evaluation was that a centralized sewer system should be installed to replace the COSS serving most buildings. IES prepared a Preliminary Engineering Report (PER) and submitted a draft version to Ryder Bunce of VDH in Sep. 2022. IES engineering staff had a Preliminary Engineering Conference with Mr. Bunce and Josh Kirtley of VDH. A final version of the PER was submitted in Dec. 2022.

Aqua Nova Engineering took over the project in December 2023. Representatives from VDH, including Mr. Bunce, Mr. Kitley and Steve Thomas reviewed the soils in the proposed dispersal area in February 2024. Subsequently, Aqua Nova performed further soils evaluations to define the variation in soil characteristics and hydraulic conductivity within the area proposed for the primary dispersal field.

DESIGN CRITERIA

Wastewater Sources, Flows and Characteristics

There are twenty-one separate buildings that will be connected to the AOSS. Table A-1 (Appendix A) lists the buildings, information about occupancy and estimated wastewater flows for each building. Also, the existing COSS that serves each building is listed in Table A-1. A summary of design wastewater generation rates by source is presented in Table 2.

Source	No. of Buildings	Occupancy Persons (a)	Flow, gpd/pers (b)	Peak Design Flow, gpd	Notes
Residences	17 (80 bedrooms)	86	50	4,300	Most bedrooms are single occupancy
Workstation/ Workshop	2	42	3	126	Workers are residents & staff (c)
Office	1 (d)	10	15	150	Occupied MonFri.
Farm Bldg	1	15	7	105	Normal occupancy. is 4 persons (e)
Community Center	1	75	10	750	Typ. use lunch only for resid.
Future Residence (f)	1	5	50	250	
TOTAL Peak Flow				5,681	

Table 2. Sewage Generation Rate by Source

(a) Maximum occupancy.

(b) Flow estimated in gallons per person per day

(c) Workstations used by residents and resident staff, up to 3 shifts/day of 7-person teams. Ea. Shift is 2-hours.

(d) Office and one of the workshops are in a single building but usage is estimated separately.

(e) Normal occupancy is four persons for the day shift. Occasionally up to 15 people attend a short meeting.

(f) Proposed future residence with five, 1-person bedrooms.

Residential Sewer Flow Estimate

Sewage flows for residences are based on measured water use for three buildings over a period of 11 months. The buildings were chosen to represent a range of usage types and locations. Amity is a larger building in the center of Innisfree and is has extra day use. Meadow is a medium sized residence on the edge of the core area. Trillium is a smaller residence located the at distant, uphill end of the Village; it is the northwest most residence.

A summary of residence measured water use is presented Table 3. The complete water use data is presented in Tables A-6, A-7, and A-8 of Appendix A. Note that the AOSS has seven-day flow equalization, so daily flow variation will be averaged over a week. Because of this, Aqua Nova allowed Innisfree to monitor water usage weekly after some daily usage had been recorded.

Building Information		Average I	· · ·	Maximum	
Name	Residents (b)	Per building, gpd	Per Person, gpd/pers.	Daily Use gpd/person (c)	Note
Amity	8	255.9	33.9	55.8 (d)	(c) (d)
Meadow	8	221.0	27.8	43.1	(c)
Trillium	6	110.1	22.5	49.9	(c)
Combined Av	erage (e)	195.6	28.1	49.6	

Table 3. Water Usage - Residential Buildings with Flow Meters (a)

(a) Water use measured with dedicated water meter from 28 July 2023 to 05 July 2024.

(b) Typical number of residents. Actual occupancy is used to compute per person water usage.

(c) Maximum daily per person water usage observed in period.

(d) Amity maximum value likely due to timing of meter readings; the two day average was 39.5 gpd.

(e) Average value for the residences listed.

Water use for the three monitored residential buildings had a combined average of 28.1 gpd per person. To be conservative, Aqua Nova chose a design flow rate of 50 gpd per person for the AOSS design. This is about 1.8 times the combined average personal use. Because sewage flow from all buildings will be combined in the AOSS Primary & Flow Eq. Tanks, the combined numbers are appropriate for the AOSS design. The chosen per capita design flow of 50 gpd also corresponds to the combined average of the maximum daily water usage.

Design Wastewater Characteristics

The wastewater is predominantly residential sewage. A smaller amount is generated by office and workshops. The Community Center is used for resident and staff lunches only 5 days per week with an occasional small event on the other days. Aqua Nova used the type of occupancy/usage to estimate loading rates for BOD, TKN and other parameters. Overall design parameters for the new AOSS are summarized in Table 4 with detailed calculations presented in Tables A-3 and A-4 in Appendix A

Detailed flow and loading calculations are presented in Appendix A, Tables A-2 through A-4, and accompanying notes. Note that Aqua Nova used a safety factor in developing the design influent load for BOD and TKN listed in Table 2 so these values are higher than would be computed from values listed in Attachment A and Table 2.

Parameter	Raw Sewage (computed) ^(a)	Primary Effluent ^(b)	Design Influent ^(c)	Design Effluent ^(d)
Flow, gal/day	5,681 -Peak	5,681 -Peak	5,450 Equalized	5,450 Equalized
BOD ₅ , mg/L ^(e) [lb/d]	617 [29.1]	430 [19.9]	420 [19.1]	<10 [0.45]
TSS, mg/L [lb/d]	617 [26.1]	247 [11.7]	253 [11.2]	<10 [0.45]
TKN as N ^(e) , mg/L [lb/d]	98 [4.6]	93 [4.4]	93 [4.2]	<2 [0.09]
Total Nitrogen, mg/L as N [lb/d]	96 [4.6]	93 [4.4]	93 [4.2]	=12<br [0.45]
Total Phosphorus, mg/L	NA	NA	NA	NA
Alkalinity, as CaCO ₃ , mg/L	250-400	250-400	400	NA
pH – standard units	350-400	350-400	6.5-8.5	NA

Table 4. AOSS System – Final Design Influent and Effluent Parameters

(a) Design parameters for sewage flow INTO the septic tanks. See Tables A-2 & A-3, Appendix A.

(b) Computed effluent from septic tanks with effluent filters. See Table A-4, Appendix A.

(c) Values used for design of Treatment and Disposal System. Flow Eq. reduces load from primary effluent.

(d) Design effluent to disposal system based on TL-3 effluent and required nitrogen removal.

(e) BOD5 = Carbonaceous 5-day Biochemical Oxygen Demand. TKN = Total Kjeldahl Nitrogen (organic N plus ammonia). TKN and Total nitrogen are concentrations and loadings are as N.

(f) Alkalinity based on estimated source water measurement plus typical addition due to human use, Table 4-15, Crites and Tchobanoglous, (1998). Alkalinity addition may be required for complete nitrification.

ONSITE SEWAGE SYSTEM OVERVIEW

The sewage system will collect wastewater from Innisfree buildings, treat it, and disperse large effluent in a low-pressure dosed drainfield. This Alternative Onsite Sewage System (AOSS) has three main components, (1) collection (2) treatment (3) dispersal that are described in this section. Because all building sewage flows to existing, functional septic tanks, the effluent from existing septic tanks is collected rather than building sewage. The proposed collection and treatment system layouts are shown in the construction drawing Attachment 1 to this report. High-quality effluent from the treatment system is pumped to a pressure-dosed drainfield system located in an area below the Farm Building and Northeast Barn along the Conservation Easement as shown in the Construction Drawing set and further described in the Dispersal Area subsection.

NEW COLLECTION SYSTEM

Septic tank effluent from regularly occupied buildings will be collected for the new Centralized AOSS using a Septic Tank Effluent Pump (STEP) and Septic Tank Effluent Gravity (STEG) collection system. The following buildings have low use and are not connected due to minimal sewage generation: Violet (garden shed), Cabana, and Pool House; septic effluent from these buildings will continue to flow to their respective existing drainfields.

Existing Septic Tanks

Existing septic tanks for the connected buildings will remain in service to provide cost effective primary treatment. All septic tanks will be retrofitted with a septic-tank effluent filter located in an access riser. The existing pipes leading from the existing septic tanks will be intercepted between the septic tank and drainfield and will either flow into pump stations or into a gravity sewer system.

STEP/STEG Sewer

The overall collection system collects settled sewage from building septic tanks and is essentially a gravity collection main with sub-mains and laterals connecting to it from buildings or groups of buildings. The sewer system layout and details are shown in the Construction Drawings, Sheets 4 through 9. Table 5 summarizes the applicable regulatory requirements and the design approach to comply with each requirement.

Table C-1 in Appendix C summarizes calculations for the gravity sewer main, including slope, length and flow. Existing gravity laterals are sufficiently sized and will not be changed except to add cleanouts. Due to the low flow rates and general downhill trend from pump stations to the gravity sewer main, STEP transport pipes will 1.5 inch diameter and will be routed as necessary to avoid buildings, roads, and buried utilities as much as possible.

There are four septic tank effluent pump stations. Each pump station will be equipped with two septic effluent pumps and a control panel with an alarm to warn of high water levels or pump faults. One of the pump stations is existing. Pump station calculations are included in Appendix C, Tables C-2 through C-4.

Existing D-Boxes and Drainfields

Once the treatment system is completed and ready for commissioning, the pipes from septic tanks to the existing drainfields will be capped after connecting the outlet to the STEP/STEG sewer. Existing distribution boxes (D-Box) and septic drainfields will be left in place. Certain drainfields will be preserved as replacement disposal areas for the new main dispersal area. These drainfields are identified in the Effluent Dispersal Section.

The drainfields in the upper and central part of the Village will not be used again in the future due to potential for contamination of gardens and groundwater. Most other drainfields will also be permanently abandoned due to age, size and location. If the D-Box is found in the process of excavating the new collection system, it be will be removed or filled gravel and the inlets & outlets will be capped.

After the Treatment System and Disposal system are completed and tested, the individual septic tanks will be connected to the main sewer system. After the connection to the main sewer, COSS abandonment applications will be submitted to the VDH with requisite documentation.

	Destan Amura de en d Neter
Regulation Section	Design Approach and Notes
9VAC25-790-310. Design factors	The STEP pump stations are equipped with duplex pumps for redundancy and can pump at around 25 GPM. The working volume of the pump stations will store any excess flow.
	The gravity sewer main sizing calculations are included in Appendix C, Table C- 1. The sizing is based on peak instantaneous flow (including the flow from STEP pumps and one future planned residence) to ensure that the pipe is never more than 70% full. The sewer sizing is all designed to carry over the required minimum design flows for laterals, submains, and mains.
9VAC25-790-320. Design details	The STEG elements of collection system all will carry settled sewage in 3"-6" pipe which is larger than the minimum required of 1.5" pipe. Gravity sewers will be run in Sch. 40 PVC or SDR-35 PVC pipe with sewer fittings. The specified minimum cover over the gravity sewer pipes is 1 foot which will be sufficient to prevent icing given the insulating properties of PVC and the slugs of pumped wastewater that will be regularly flushing through the main. The calculations in Appendix C, Table C-1 show the flow velocity based on the slope and a Manning's n of 0.011 which is typical for a PVC pipe coated in scum. Larger solids deposits will not occur, because the system received settled and screened
9VAC25-790-330. Construction details	sewage. We have specified low-pressure air testing for the gravity sewer piping. Detail 9- 2 on Sheet 9 of the plans shows the standard rigid piping backfill detail.
9VAC25-790-350 Manholes	Cleanouts will be used for the settled sewage gravity collection piping. There are not locations where four or more settled sewage collection pipes intersect. Cleanouts will be located at most every 200 feet and before any junction or bend larger than 30 degrees.
9VAC25-790-360. Water quality and public health and welfare protection.	New sewer pipes will not be installed in the same trench as water pipe nor installed within 10 feet existing water pipes when running parallel. Details 7-1 and 7-2 on Sheet 7 of the plans show how utility crossings including potable water pipe crossings will be handled.
9VAC25-790-390. Reliability	Innisfree Village has backup power for residential building and well water systems. This allows building residents to conduct water using activities during a power outage. Any STEP pumps will be connected to the buildings backup power supply to prevent a back-up or overflow of the septic effluent pumping system.
9VAC25-790-430. Alternatives	All sewage will pass through existing upgraded or new septic tanks with 1/16" effluent filters and into the STEP pump stations which will have duplex pumps, a control panel with float switches and alarm.
9VAC25-790-440. Force mains	The septic tank effluent pumping systems will discharge into pressure laterals and a forcemain with a diameter of 1.5". The pumping rate is around 25 GPM which equates to a velocity of about 4.5 ft/s. STEP sewer pipes will connect to the gravity collection main with a terminal flushing connection and isolation valves followed by a wye into the gravity main. Pressure testing to 150% of design pressure has been specified. Pipe will be HDPE installed per manufacturer's instructions. Flushing connections will be provided at regular intervals to allow for inspection.

 Table 5. Sewer Design Summary

CENTRALIZED TREATMENT

Overview

The centralized AOSS includes an advanced treatment system. The collected septic effluent will be treated in a multi-step biological treatment process. The high-quality effluent will then be dispersed in a controlled manner to a subsurface dispersal system described in the subsequent section. The centralized treatment system will meet project goals stated in the Overview Section. As stated therein, TOrC reduction is a goal, though not required by Virginia regulations.

The Design Effluent characteristics are listed in shown Table 4. The effluent BOD and TSS will meet Treatment Level 3 (TL-3) as listed in the Virginia Department of Health (VDH) regulations. The treatment will remove more than 50% of the influent nitrogen as part of the requirements for an AOSS. For this project, Innisfree has additional criteria for the treatment system performance and design. Additional project goals include removing a significant amount of TOrCs and dispersing very high-quality effluent to preserve soil absorption capacity.

Effluent Total Nitrogen Requirements

The Innisfree AOSS will meet the requirements of 5 mg/L of total nitrogen (TN) at the project boundary through nitrogen removal in the treatment system and some dilution from rainfall in the Nitrogen Dilution Management Area (NDMA) shown on Sheet 23. Due to the location of the dispersal area and surrounding topography the NDMA is relatively small at about 298,000 sq. ft (6.84 acres) so the treatment system effluent must have relatively low TN to meet the boundary limits. A summary of the inputs and calculations of the effluent Total Nitrogen Dilution Model developed by Aqua Nova Engineering is presented in Table 7. The full calculation summary is in Appendix B, Table B-2 Nitrogen Dilution Calculations.

Parameter	Value
Flow, gal/day (a)	5,762
Days/year of Discharge	365
Effluent Total Nitrogen, mg/L (b) With Soil DN Factor (0.10), mg/L (c)	14.0 11.7
Total Dilution Area, sq. ft [acres]	298,000 [6.84]
Rainfall, inches/yr	44
Average Rainfall infiltration (d)	40%
Average Annual TN at project boundary, mg/L	4.94

Table 6. Nitrogen Dilution Model Summary

(a) Design hydraulic loading capacity of drainfield = Equalized flow times factor of 1.05.

- (b) Design final effluent from treatment system
- (c) Assumed value for relatively steep area with full grass / meadow plant cover.
- (d) Assumed value for relatively steep area with full grass / meadow plant cover.

Primary Treatment and Flow Equalization

At Innisfree, septic tanks connected to the buildings provide initial primary treatment, removing most solids, settleable and floating waste components. The septic tank effluent from all connected buildings will discharge into a primary settling and filter tank located at the main treatment system. This tank has dual effluent filters and will remove any residual solids or oil/grease that may have escaped the building septic tanks. This will minimize trash and other constituents that could negatively impact the rest of the treatment process.

Effluent from the primary screening process will be overflow into The Flow Equalization tank that is sized to equalize flow over seven days. This attenuates daily peak flows and higher flows from weekdays and or events. Duplex pumps in the Flow Eq. Tank are activated by the control panel in timed doses to deliver a relatively steady flow to the Secondary Treatment system. In the event of very high levels in the Eq. Tank there is a gravity overflow pipe into the Pre-Anoxic Bioreactor tank.

Because sewage flows may be at design levels during power outage events, Innisfree has decided that the treatment and disposal system will be on automatic backup power from a generator. The generator will automatically come on during a power outage to maintain wastewater system operation.

Secondary treatment

The purpose of secondary treatment is to reduce BOD and TSS to TL-3 levels or below. Also, the secondary treatment system will remove significant nitrogen. For this system, high quality secondary effluent is also necessary for the third stage of treatment (Tertiary Treatment). The secondary treatment process is described below.

Secondary treatment will utilize a biological, fixed-film process with a pre-anoxic denitrification reactor. The aerobic fixed film process is the AdvanTex system by Orenco. This proprietary trickling filter system relies microbial communities attached textile strips to treat the wastewater. The wastewater is pumped into a system of sprayers that distribute it over the textile array. This oxygenates the wastewater and brings the wastewater in contact with the microorganisms that convert the waste compounds to benign products and some microbial biomass.

The proposed design includes two stages of recirculating, trickling biofilters to provide a high level of treatment and ensure complete conversion of ammonia to nitrate (nitrification). Nitrified process water is recirculated to an anoxic reactor located downstream of the Flow Equalization Tank which will provide biological denitrification and reduce the incoming BOD somewhat. The secondary effluent will have low BOD, TSS and nitrogen and will receive further treatment in the Tertiary Treatment system.

The secondary treatment process may also provide reduction in certain trace organic compounds. The AdvanTex process appears to have good removal rates for certain TOrCs based on initial literature review. The AdvanTex treatment stage will be followed by tertiary treatment for polishing and additional removal of TOrCs.

Pre-Anoxic Reactor

The Pre-anoxic Reactor receives Eq. Tank effluent and recycled flow from the Stage 2 AdvanTex system for biological nitrogen removal. The Pre-anoxic Reactor tank has nominal a volume of 2,000 gallons and will provides about 2.9 hours residence time for the design flow with a 200% recycle rate. The septic effluent pumped in from the Eq. Tank will be anaerobic and high in BOD. The process water pumped back from the AdvanTex system will have significant amounts of nitrate which is used by bacteria to oxidize some of the incoming BOD. The recycle flow will be aerobic so recirculation rates will be controlled to prevent aerobic conditions in the Pre-anoxic Reactor.

The Controller activates pump P10 in the Stage 2 AdvanTex Recirculation Tank to move nitrified process water through the Control Building, where alkalinity can be added as necessary, to the Pre-anoxic Reactor. A propeller mixer will mix the tank contents without adding further oxygen. The Pre-Anoxic tank overflows to the Stage 1 AdvanTex Recirculation Tank #1.

AdvanTex System Design

The AdvanTex system will have two stages each with a recirculation tank and dedicated pumps to dose the textile media. The AdvanTex system was designed in accordance with loading and performance criteria provided by Orenco. The design calculations are presented in Table B-1 in Appendix B., and the system is summarized below.

- 1. Stage 1: AdvanTex System. From the Anoxic Reactor, receives controlled doses from Equalization Tank.
 - a. 6,000-gallon recirculation volume consisting of two 3,000 gal. tanks bottom connected. Recirc. Tank 1 volume is about 1.1 times the Equalized Design flow.
 - b. FIVE AdvanTex AX-100 pods (#1-#5), based on BOD mass loading rate.
 - c. Each pod is dosed by a dedicated pump (P3-P7).
 - d. Drains from the AX-100 pods go to a recirculating splitter valve, RSV1.
 - e. RSV1 directs flow back into the Stage 1 recirc. Tank or forward to the Stage 2 Recirc. tank, depending on the level in the Stage 1 Recirc. Tank.
- 2. Stage 2: AdvanTex receives Stage 1 effluent from RSV1.
 - a. Provides further BOD removal and nitrification.
 - b. 3,000-gallon recirculation tank with duplex pumps (P8 and P9)
 - c. ONE AX-100 pod based on hydraulic loading, dosed by P8 / P9.
 - AX-100 pod # 6 drains to RSV2 which either directs flow back into the Stage 2 Recirc Tank or forward to the Stage 3 treatment, depending on the level in the Stage 2 Recirc. Tank.

- 3. AdvanTex ventilation. The AdvanTex units are provided with passive ventilation to provide oxygen to the biofilms in the AX pods. This has been proven effective at supplying sufficient oxygen for BOD removal and nitrification.
- 4. Controls System. the overall system Control Panel will control the AdvanTex dosing pumps. This Control Panel will have user set timing for the AdvanTex dosing to allow operators to adjust dosing timing and rest duration.

Alkalinity Addition

Alkalinity will be added as needed to the recycle pipe to the Pre-Anoxic by a chemical dosing pump (MP2) located in the Control Building and actuated by the Control Panel. The system will include a 50 gal drum for sodium carbonate solution. Operators will need to periodically check pH and alkalinity and adjust the dosing settings to insure adequate alkalinity for complete nitrification.

Tertiary Treatment

A tertiary treatment system will be included in order to provide further and final treatment. This system is designed to:

- Produce very high-quality effluent that maximizes dispersal soils longevity and
- Reduce TOrCs that may contaminate the environment.
- Provide final nitrogen removal to meet design effluent requirements

Aqua Nova selected a dual-media packed bed reactor for TOrC/nitrogen removal that consists of an unsaturated wood chip layer underlain by a saturated rock-sulfur layer. Effluent from the lower layer flows into a moving bed biofilm reactor (MBBR) followed by a settling tank with an effluent filter to capture residual suspended solids.

Design of the Woodchip + Rock/sulfur Biofilter

This biofilter is surfaced dosed and has three main layers. The top layer is wood chips that will remain unsaturated which favors removal mechanisms for TOrCs. The rock-sulfur layer receives effluent draining through the woodchip layer and provides further denitrification and removal of excess BOD potentially leaching from the woodchip layer. The biofilter details and design criteria are outlined below.

- Lined basin with a media bed area of 320 square feet. This bed area will be covered by a roof structure to prevent rainfall entering the system and minimize plant growth in the woodchip bed.
- Top layer: 24 inches deep. Blend of 85-90% wood chips with 10-15% activated carbon.
 - \circ $\;$ The design areal loading rate is 18 gpd/sq. ft. based on research references.
 - o Surface dosed via distribution laterals with holes and flow spreading devices
- Second Layer: 9 inch deep plenum of rain-tank matrix boxes
- Bottom layer of drainage rock with sulfur pellets for anoxic denitrification
 - o Design loading rate is 10 gpd/cu.ft. based on research references
 - o Sulfur provides terminal electron acceptors in the denitrification process

- Sulfur pellets can be added to the Second layer through pipe ports
- Collection piping in the bottom layer directs flow out to an effluent/ recirculation basin.

Woodchip + Rock/sulfur Treatment Mechanisms

The upper layer will have hardwood chips to support a community of fungal and organisms. The activated carbon in this layer will adsorb TOrCs so that the fungal/microbial matrix can metabolize these compounds. Eventually the wood chips will break down and need to be replaced. This layer can be removed with a sewer vacuum truck and/or careful use of a loader with hand shoveling. The removed material will be composted. The composting process will break down residual TOrCs.

The middle layer is rain-tank matrix boxes installed contiguously to form a 9 inch tall "plenum" zone resting on the bottom rock layer. This plenum zone allows for flow redistribution and a series of dosing ports allows sulfur to be added when necessary to the plenum where it will wash down into the rock layer.

The lower layer will be crushed rock with a nominal 1" size. Elemental Sulfur pellets will be added to the top of this layer during commissioning. The sulfur is slowly oxidized in the process of denitrification so this effluent will have sulfate and potentially sulfides.

Final Polishing Reactor

The final polishing moving bed biofilm (MBBR) reactor is designed to remove excess BOD and oxidize sulfides to avoid malodorous effluent. A significant amount of BOD can leach out of the wood chip layer when biofilter is started up and for up to 12 months after. This BOD may not be removed in the anoxic rock/sulfur layer. Also, effluent from rock/sulfur bed may have significant amounts of sulfides. An aerobic MBBR will remove the residual BOD and oxidize any sulfides. The details and design criteria of the MBBR and settling tank are outlined below.

<u>MBBR</u>

- 2,500 gallon Precast concrete tank with biofilm carriers (media)
- Aeration and mixing provided by a removable, coarse bubble diffuser system
- Air provided by a linear piston air pump supplying 10-12 SCFM.
- The reactor is sized for 100 mg/L of influent BOD with effluent < 5mg/L.
- The surface area loading rate for the carriers of 1.4 g/d per m² of protected carrier surface area (Reference maximum value is 5 g/d per m²).
- Carrier volume will be 2m³ or about 70ft³. This represents about 20% of the reactor water volume to allow good circulation. (Max. recomm. fill is 35% of reactor vol.)

Settling Tank

- 1,100 gallon compartment in the Effluent Pump Tank
- Min. residence time of 4 hours at design flow.
- Septic Tank Effluent filter (Polylok PL-625) to prevent solids carryover
- Accumulated sludge will be periodically pumped to the septic tank or hauled off site for disposal.

SYSTEM CONTROL PANEL

The AOSS will be controlled by the central control panel based on programmable logic controllers with a touch screen operator interface. The Control Panel will control all the devices in the treatment system as well as effluent dispersal. The HMI will allow operators to review system status and data and easily change settings for controlled devices. An internet connection to the Control Panel will allow remote access for (1) broadcasting alarms and (2) monitoring and control.

The control panel will be located in the Control Building along with the main electrical panel. Most devices will be powered directly from the Control Panel with built in overload protection. Hand/Off/Auto switches will be provided for critical components to allow for manual operation and testing.

CENTRALIZED EFFLUENT DISPERSAL

The effluent will be pumped from the Effluent Tank to a low pressure-dosed lateral drainfield located about 1,200 ft away to the north northeast. Because of the size of the drainfield and variation in soil qualities in the area, Aqua Nova designed three discrete drainfields each with a low-pressure dosed lateral system. This is described further in the following subsection.

General Soils Evaluations

Aqua Nova engineers (while working at IES) directed HydroGeo Environmental, LLC (HydroGeo) to evaluate soils at Innisfree to identify areas suitable for disposal of the effluent from a centralized treatment system. After extensive initial evaluations in 2022 and 2023, we identified an area of suitable soils at the base of a slope below the "plateau" on which Innisfree is constructed.

On 06 Feb. 2024, representatives of VDH met with Aqua Nova and HydroGeo to review soils evaluations in the main proposed drainfield area. The findings from that review indicated that the soils evaluations in the PER were not entirely correct and the "Percolation Rates" had been overestimated.

After the VDH review, Aqua Nova and HydroGeo prepared additional soil profile descriptions and saturated hydraulic conductivity (Ksat) test to develop design hydraulic application rate for the different soils zones within the proposed drainfield area. The drainfield area has denser soils in the center section with more favorable soils on the side areas. Aqua Nova developed a drainfield design as described below with calculation details in Appendix D.

Drainfield Soils Evaluations

Based on the results of all the drainfield evaluations, Aqua Nova developed a drainfield design of four zones within the proposed drainfield area, identified as Sub-areas or Cells A-D. The Cells and locations of evaluations are presented Figure 1. A summary of soil characteristics and saturated hydraulic conductivity tests (Ksat) results for the drainfield subareas are presented in Table 6. Drainfield Design soils evaluation information is presented in Appendix E, this includes Table E-1 with eh soil profile descriptions and Ksat value summaries. The full field data for the Ksat tests is also included in Appendix E.

Innisfree Village Alternative Onsite Sewage System -Engineering Report

Aqua Nova Engineering, PLC 3452 Bleak House Rd. Earlysville, VA 22936 Tel. (434) 249-4497

Design Hydraulic Application Rates

Based on the soils evaluations, field observations and Ksat testing results, Aqua Nova developed "Estimated perc rates" and design hydraulic loading rates for the different drainfield sub-areas. The information used to develop these values is summarized below by Sub-Area or Cell. The main soil features, and hydraulic conductivity of the Cells are summarized in Table 7. The "25% GM Ksat" value in Table 7 is derived by dividing the geometric mean of cell Ksat data by 4.

	D	esign	Ksat Evalua	tions (a)	Hydraul	ic Conducti	vity (a)
Sub- area (b)	Trench bottom, in. (c)	Soil texture (d)	Number of Tests (e)	Depth of Test, in. (f)	Geometric Mean, cm/d	25% GM Value, cm/d (g)	Geo-mean x 0.10 (h), gpd/ft^2
А	18-20	Clay Loam	Less Deep -4	30-32	44.1	11	1.08
			Deeper- 2	53-58	33.1		
В	18-20	Clay Loam and Clay	Less Deep -5	24-32	24.3	6.1	0.60
			Deeper -1	45	10		
С	18-20	Clay Loam & Clay	Less Deep -5	24-32 58	38.1	9.5	0.94
			Deeper -1	58	2.5		
D	18-24	Clay Loam and Clay	Less Deep -2	30-32	55.9	14	1.4
			Deeper -1	44	76.0		

Table 7. Drainfield Subareas Soil Texture and Ksat Results
--

(a) Saturated, clean water, hydraulic conductivity measurements using Johnson Permeameter.

(b) Designated Cell (sub-area) of larger proposed drainfield area. See Figure 1.

(c) Depth of trench bottom below surface.

(d) Most common soil textures for strata at trench bottom (18 inches) and 18 inches below.

(e) Number of separate Ksat tests run for listed depth range.

- (f) Depth from surface to bottom of permeameter.
- (g) Value for developing hydraulic loading rates from VA regs, equal to geometric mean times 0.25.

(h) Geometric mean divided by $10 (x \ 0.10)$ converted to gpd/ft².

Drainfield Cell (Subarea) A -Design Hydraulic Loading Rate

Drainfield Cell A generally had clay loam soils from 6 to18 inches and for at least 18 inches below that. The exception is SPD 5 located south of the lowest trench closer to the heavier soils in Cell B. The majority of that trench and the rest of Cell A have clay loam soils. The Ksat results range from 12 to 110 cm/d with geometric mean of 44.1. One fourth of the geometric mean is 11 cm/d. This value and the soil textures justify the overall Estimated Percolation rate of 55 MPI with associated hydraulic loading rate of 0.94 gpd/ft². Note that Ksat geometric divided by 10 is equal to 1.08 gpd/ft² and the proposed rate is less than that.

Drainfield Cell (Sub-area) B -Design Hydraulic Loading Rate

Drainfield Cell B generally had clay soils at the trench bottom depth, and for at least 18 inches below the trench bottom depth. About half the SPDs have clay loam soils in that same depth range. The SPDs with clay soils show good structure that will allow decent hydraulic conductivity. The Ksat data results ranged from 5 cm/d to 120 cm/d with geometric mean of 44.1. One fourth of the geometric mean is 6.1 cm/d. The soil structure and Ksat data support the Estimated Percolation Rate of 90 MPI with associated hydraulic loading rate of 0.50 gpd/ft². The geometric mean of Ksat values divided by 10 is equal to 0.60 gpd/ft² and the proposed HLR is slightly less than that at 0.56 gpd/ft².

Drainfield Cell (Sub-area) C -Design Hydraulic Loading Rate

Cell C had a mixture of loam and clay loam from about 6 to 19 inches. For at least 18 inches below the trench bottom depth, the soils were clay loam and clay. The SPDs with clay soils had structure that will allow decent hydraulic conductivity. The four Ksat tests conducted from 28 to 30 inches below grade have a range of 32 to 42 cm/d with a geometric mean of 38 cm/d. One fourth of that is 9.5 cm/d, which along with soil type, support an Estimated Percolation rate of 65 MPI and a design application rate of 0.83 gpd/ft². The geometric mean of Ksat values divided by 10 is equal to 0.94 gpd/ft² and the proposed HLR of 0.83 gpd/ft² is less than that.

Drainfield Design

Using the geometry of the sub areas, Aqua Nova developed a trench layout for each subarea and calculated the hydraulic capacity of each sub-area. The characteristics and capacity of the sub-fields in the Primary Dispersal is shown in Table 8. Table D-1 in Appendix D contains more detail on the drainfield design. The overall capacity of the drainfield is somewhat higher than the Equalized Design flow, i.e., design effluent flow.

Note that sub-area D is located uphill of sub-area A. Sub-area D will not be used as part of the Primary Drainfield but will be used for part of the reserve area. Therefore, it is not shown in Table 7.

Primary Drainfield System Design Details

The primary drainfield will consist of Sub-areas A, B and C as listed in Table 6. specific details are shown on the construction drawings and are summarized below.

- Low-pressure dosed trenches, three feet wide, using EZ-Flow gravelless modules.
- 11 Zones -flow controlled by solenoid valves and flow balancing valves
- Lateral lengths vary from 75 to 100 ft. Each lateral has a flow balancing valve.

The multiple zones within each drainfield will facilitate effective dosing of the effluent. Low pressure dosing calculations for each drainfield sub-area are presented in Appendix D, including details of each LPD system matched with effluent (P13 & P14) pump curves

			Dispersal Trench Physical & Design Information									
Cell or Sub-area (a)	Estimated Percolation Rate, MPI (b)	HLR gpd/ft2 (c)	Number of Trenches (d)	Width ft	Length ft	Absorb. Area, ft2 (e)	Hydraulic Capacity gpd (e)					
А	60	0.94	9	3	75	2,205	1,904					
В	90	0.58	12	3	85	3,060	1,714					
С	65	0.83	8	3	100	2,400	1,992					
TOTAL						7,485	5,609					

Table 8. Primary Drainfield Design – Characteristics and Capacity

(a) Designated sub-area of larger proposed drainfield area as shown in Figure 1 and listed Table 7.

(b) "Percolation Rate" defined in VA regulations, estimated from soil profile descriptions and Ksat results.

(c) Hydraulic loading rate from 12VAC5-610-950, Table 5, based on Percolation Rate and Ksat results for application of TL-3 effluent with LPD loading. See explanation in subsections below

(d) Design number of trenches in dispersal field at 9 ft on center.

(e) Total trench bottom area for absorption of applied effluent.

(f) Total amount of effluent that can be applied to sub-area on a daily basis.

Reserve Drainfield Area

Because this AOSS is replacing existing COSS systems and is essentially a repair, a reserve drainfield area is NOT required by VA regulations. However, Aqua Nova believes it is prudent to propose a reserve drainfield system design. The proposed approach uses multiple drainfield areas: Sub-Area D of the new drainfield area and some existing drainfields for specific buildings. The characteristics of the areas to be used for Reserve Drainfield are listed in Table 9. The existing drainfields would need to be retrofitted with pressure dosing to provide the design application rate. The proposed reserve drainfield area specifics are listed in Table D-2 in Appendix D.

Innisfree will be directed to survey the existing drainfields to be used for reserve and create a plan to preserve these areas in perpetuity. This plan will include specific language in the Innisfree planning documents that preserves these areas and access to them.

			Dispersal Trench Physical & Design Information									
Sub-area /Cell (a)	Perc. Rate, MPI (b)	HLR gpd/ft2 (c)	Number of Trenches (d)	Width ft	Length ft	Absorb. Area, ft2 (e)	Hydraulic Capacity gpd (f)					
D (*)	50	1.0	10	2	65	1,300	1,300					
Comm. Cntr. (**)	115	0.35	12	3	85	9,600	3,360					
Redstar (**)	100	0.46	8	3	100	1,500	690					
Office	100	0.46	4	3	80	960	442					
TOTAL						7,485	5,792					

Table 9. Reserve Drainfield Design – Characteristics and Capacity

(a) Drainfield Cell D, defined in Fig. 1. is new. Other areas are existing drainfields.

(b) "Percolation Rate" from soils evaluations OR existing COSS permits.

(c) Hydraulic loading rate from percolation rate with TL-3 effluent & LPD dosing (12VAC5-610-950, Table 5.5).

(d) Design number of trenches in dispersal field at 8 ft on-center for Area D and 9 ft on-center for other areas.

(e) Total trench bottom area for absorption of applied effluent.

(f) Total amount of TL-3 effluent that can be applied to sub-area on a daily basis.

Groundwater Mounding Analysis

A groundwater mounding evaluation was performed using the spreadsheet model, from Khan et. Al, 1976, provided by VDH. This model was used to evaluate the potential for mounding of effluent underneath the drainfield areas. A separate spreadsheet model was developed for each drainfield Cell (A-C) because each sub-area had different soils and Ksat values. Drainfield cells A-C are aligned along the contours and general slope is perpendicular to the trenches of the three drainfields so the infiltration of adjacent drainfields should not affect each other. Results of this model are included in Appendix D after Table D-1.

The model inputs assumed conservative hydraulic conductivity or permeability values. The vadose zone (K1) permeability was assumed to be only 25% of the median Ksat Value for a given drainfield. The Restrictive Layer permeability (K2) was set at 25% of K1. The notes section of each mounding model explains that model input values in detail. Even with these very low permeability values, the model predicts no mounding at the design application rates.

Low Pressure Dosing System Details

Effluent from the final settling and filtration tank will flow into a 1,100-gallon nominal volume effluent pump tank. Duplex effluent pumps will pump effluent to the LPD drainfields via an approximately 1,500 ft long transfer pipe. This transfer pipe passes through two flow meters, one located near the treatment system and another at the drainfield area to allow for monitoring of flow, leak detection, and drainfield balancing. A manifold splits flow between the three drainfield Cells (A-C) with manual valves on each for control and balancing to each Cell. Each drainfield sub area has a dedicated zone valve array with manual balancing valves and zone solenoid valves.

The effluent pumps will be programmed to time-dose the drainfield with each dose cycling through the zone valves one at a time. The flow meters will totalize flow to each drainfield zone to allow the operator to more accurately balance flow to each zone in the long term and detect problems with solenoid valves. The solenoid valves will be controlled and powered via a relay panel located near the drainfield to allow manual operation and troubleshooting.

Detailed information about the pump sizing and LPD system including lateral lengths, orifice size and spacing, and headloss are included in Appendix D as Figures D-1, D-2, and D-3. Details on the LPD system's construction can also be found on Sheet 21 of the plans.

Controls System and Remote Access

The entire wastewater treatment and disposal system operation will be fully automated through the Wastewater Controller which includes a Programmable Logic Controller (PLC) with graphic viewing through a smartphone or personal computer. Based on programmed logic, operator input and multiple sensors, the PLC activates all pumps, actuated valves and blowers. The phone/ computer interface allows easy operator control and input. A secure network connection allows remote monitoring and control of the system for designated operators through the internet. This network connection also allows alarms to be sent to designated operators through email.

Hydraulic Controls and Overflows

Water level sensors (float switch assemblies) located in most tanks or basins in the treatment process sense low, normal and high water levels. Flow meters in the system measure flow into the treatment system and disposal area. Water levels, flow rates and pumps' operational status are monitored by the Wastewater Controller at all times. High water levels will be logged in the Controller and flagged for operator review. Critical high water conditions will trigger an alarm that will be broadcast to designated operations staff.

If water reaches a critical level in the Stage 2 Recirc tank, the Eq. Tank pumps will be disabled and an alarm created. These safeguards prevent spills of untreated wastewater from the wastewater system.

REFERENCES

- 1. Crites, R. and Tchobanoglous, G., 1998. <u>Small and Decentralized Wastewater</u> <u>Management Systems</u>. McGraw- Hill.
- 2. McQuarrie, J. and Boltz, P., 2011. <u>Moving Bed Biofilm Reactor Technology, Process</u> <u>Applications, Design and Performance</u>, Water Environment Research, Vol. 83, No. 6.
- 3. Tchobanoglous, G., and Burton, F., 1991. <u>Wastewater Engineering Treatment Re-use</u> and Disposal, Metcalf and Eddy, 3rd Edition, McGraw-Hill.
- 4. Water Environment Federation, 2010. Biofilm Reactors WEF MOP 35. McGraw-Hill.

Appendix A

Flow and Loading Calculations

- Design Flow and Loading Calculations
- Flow Equalization Volume Calculations
- Detailed Water Use Data

Printed: 8/14/2024

Appendix A - Design Wastewater Flow and Characteristics

Project Name: Innisfree Village - Alternative Onsite Sewage S	ystem	Updated:	8/14/2024	Checked:	8/14/2024
Scenario: All Regularly occupied or used buildings		By:	D. Maciolek	By:	C. Hammond

Table A-1. EXISTING Buildings, Occupancy and Sewage System Information

Building	Addr	ess (a)	Bed- rooms	l ypical Residents	Max Occupancy	Unit flows (gpd/person)	Design flow (gpd)	Septic System	Septic Tank Size (gal.)	# tanks (b)
Trillium	5700	Innisfree Ln.	5	5		50	250	Individual	1,000-1,500	1
Halcyon	5696	Innisfree Ln.	7	7		50	350	Individual	1,500	1
Oakwood	5670	Innisfree Ln.	3	3		50	150	Individual	1,000	1 (b)
Upper Residences Subtotal	3		15	15			750			3
Kenmare	5638	Innisfree Ln.	7	7		50	350	Individual		(e)
Laurel (New) Part 1	5616	Innisfree Ln.	8	8		50	400	Laurel 1 (1/3)	1,250	1 (b)
Laurel (New) Part 2		Innisfree Ln.	Incl. in Lau	rel Part 1				Laurel 2 (2/3)	1,250	1 (b)
Garden Cottage		Innisfree Ln.	1	2		50	100	Old Laurel Drainfield	750-1,000	1
Oz 2 (downstairs)	5566	Innisfree Ln.	2	2		50	100	Individual	750	1
Oz 1 (upstairs)	5566	Innisfree Ln.	1	2		50	100	Individual	750	1 (b)
Dogwood	5542	Innisfree Ln.	8	8		50	400	Individual	1,500	1 (b)
Sunflower	5540	Innisfree Ln.	8	9		50	450	Individual	1,000-1,500	1
Windsong	5525	Innisfree Ln.	4	4		50	200	Individual	1,000	1 (b)
Meadow	5514	Innisfree Ln.	8	8		50	400	Individual	1,500	1 (b)
Amity and Harmony	5495	Innisfree Ln.	9	9		50	450	Amity/Harmony Mult	1,500	1
Echo	5480	Walnut Level	2	2		50	100	Echo/Walnut Level	Shared w/ Walnu	t Level
Walnut Level	5474	Walnut Level	4	4		50	200	Echo/Walnut Level	900	1 (b)
Bittersweet	5490	Walnut Level	3	6		50	300	Bittersweet/Swallowt	1,000	1 (b)
Lower Residences Subtotal			80	86			3,550			
Swallowtail -garden wkstn (g)	5484	Walnut Level			21	3	63	Bittersweet/Swallowt	Shared w/ Bitterswee	et (b)
Wrkstn at Office Bldg. (g,h)	5466	Innisfree Ln.			21	3	63	Individual	1,000	1 (b)
Farm Building (Redstar), Day use + occasional meeting	5501	Walnut Level			15	7	105	Farm Bldg. Individual	1,000	1 (d)
Office Bldg. Staff (h)	5466	Innisfree Ln.			10	15	150	Individual	1,000	1 (b)
Office & Workshop Subtotal					57		381			
Community Center (h)	5483	Innisfree Ln.	N/A		75	10	750	Individual	2,000	2 (b)
OVERALL TOTAL				101			5,431			45541

(a) Building number and street address. All are listed as Crozet, VA 22932

(b) Based on VDH permits currently available.

(c) Based on permits from VDH, or where no permit is available, from 2017 "Preliminary Engineering Report" by C. F. Greenberg. Field verify as necessary.

(d) Septic system record is unclear.

(e) Operation Permit was obtained from Health Department

(f) Information is from the septic permit for Community Center (5483 Innisfree Ln.) Need to confirm all information for this well

(g) Workstation Buildings are used by up to 3 shifts of seven-person teams, each there for 2 hours max. Flow is assumed as 1 toilet use + misc.

(h) Office and Workstation Buildings are joined. Office staff is listed separately from worstation staff.

(i) Buildings are not residences and have only occasional use.

Appendix A - Design Wastewater Flow and Characteristics

Project Name:	Innisfre	e Village -	Alternati	ve	Onsite Sewag	e System
Updated:	8/8/2024		By:	D.	Maciolek	

Table A-2. Sewage Flow Estimated from Buildings Connected to AOSS (a)

		Number of	Unit flow,	Source	Che	ck
Area or Source	Unit	Units	gpd	flow, gpd	(Table	A-1)
Residential Buildings (b)	Resident	86	50	4,300	4,300	gpd
Workstation and Wrkshps	Users	42	3	126	126	gpd
Office Building	Staff	10	15	150	150	
Redstar Farm Bldg	Users	15	7	105	105	gpd
Community Center	Occupants	75	10	750	750	
Future additional residence (d)	Person	5	50	250		gpd
	Total P	eak Waste	water Flow	5,681		gpd

(a) Regularly occupied buildings including residences, offices, workshops & Comm. Cntr. NO pool & Cabana

(b) Current Residential Buildings per Table A-1.

(c) Farm building used for egg processing. Day use only; typical use is 3-5 employees with occas. meetings.

(d) Potential future expansion under consideration by Innisfree.

Table A-3. Waste Loading (Raw Sewage) Resulting Concentrations

			Ref. \	/alue			Load per unit lb/d							
		Number	Daily Lo	ad, Ib/d			Design Value				Source Total Loading, lb/o			
Source or Area	Unit	of Units	BOD/TSS	TKN		BOD		TSS		TKN		BOD	TSS	TKN
Existing Residents	Persons	101	0.200	0.029	(a) (b)	0.20		0.20		0.03		20.20	20.20	2.93
Office and Workstations	Users	57	0.03-0.07	0.010	(a) (d)	0.03		0.03		0.01		1.71	1.71	0.57
Community Center	Users	75	0.040	0.006	(e)	0.04		0.04		0.01		3.00	3.00	0.44
Future expansion	Persons	5	0.200	0.029	(a) (b)	0.20		0.20		0.03		1.00	1.00	0.17
										Tota	l Load	25.9	25.9	4.1
Combined Concentration at Peak Flow, mg/L							547	547	87					

(a) Reference value for BOD and TSS daily mass load from VA Regs (Reference 1), Table 5.1. Residents = "Dwelling"

(b) Values for TKN are the typical per capita values for individuals per Wastewater Engineering text. See note (c)

(c) Based on "Quantity of Waste Discharged by individuals on a dry weight basis, Typical without ground up kitchen waste", Metcalf and Eddy (Ref. 2), Table 3-12, p.

(d) Values for TKN are the 1/3 of the per captia values for individuals for 8 hour shift. See note (c)

(e) Short term visit and/or lunch. Values for BOD are 1/5 of per capita values per note (a) andfor TKN are 1/5 values per note C.

References

1. Commonwealth of Virginia, Adiministrative Code, 12VAC5-610-670.

2. Tchobanoglous, Burton and Stensel [Metcalf and Eddy], 2002, Wastewater Engineering, fourth ed., McGraw Hill, Inc.

3. Crites and Tchobanoglous, 1998, Small and Decentralized Wastewater Management Systems, McGraw Hill, Inc.

Appendix A - Design Wastewater Flow and Characteristics

Project Name:	Innisfre	e Village -	Alternati	ve	Onsite Sewag	e System
Updated:	8/8/2024		By:	D.	Maciolek	

Table A-4. Design Criteria -Wastewater Treatment and Disposal (a)

		Primary Ef	fl. Calculate	d Values (b)	Design Fo	r Treatment (c)				
	Computed	Treatment	Flow (gpd)	5,681	Flow (gpd)	5,500	De	sign Efflı	uent	
	Load d)	Reduction	Load	Equiv.	Load	Equiv.	Avg. Conc.	Load	Removal	
Parameter	lb/d	% (d)	lb/d	Conc., mg/L	lb/d	Conc., mg/L	mg/L	lb/d	% (f)	Max. (f)
BOD	25.9	32%	17.6	371.9	17.1	372	7	0.32	98%	10
TSS	25.9	<mark>60%</mark>	10.4	218.7	10.0	219	7	0.32	97%	10
TKN	4.1	5%	3.9	82.2	3.8	82	2	0.09	98%	2
Nitrate	0.0		0.0	0.0	0.0	0	8			12
Total Nitrogen	4.1	5%	3.9	82.2	3.8	82	10	0.46	88%	14
TP (a)	0.0		0.0	0.0	NA	NA	NA		-	
E. Coli, MPN/100 mL		NA			NA	NA	NA		-	
Min. Temperature, °F		NA			60	NA	NA			
Temperature, °C		NA			15.6	NA	NA			

(a) Flow, loading and resulting concentrations for design of biological treamten system, secondary clarifier and disposal system.

(b) Estimated flow and calculated load after reduction in primary treatment System and resulting concentration.

(c) Equalized flow and load for design of tratment systems..

(e) Estimated percent reduction in Primary Treatment, i.e., septic tanks with effluent filters.

(f) Percent removal based on influent to secondary treatment

Date Printed: 8/14/2024

Wastewater Treatment System Design

Appendix A - Flow Equalization Calculations

 Project Name:
 Innisfree Village - Alternative Onsite Sewage System

 Updated by:
 DJM
 8/14/2024

Peak Daily Flow (gpd), from Table A-2. 5,681

Table A-5. Equalization Volume & Average Flow

Projected Flo	w Pattern			Discharge &	Vol. in Ta	nk, gal.
Day	Flow Adj	<u>ustment (a)</u>	Daily	DAILY		Volume in
Of week	gpd	Reason	Flow, gpd (b)	Discharge (c)		Tank (d)
Monday	0		5,681	5500		281
Tuesday	0		5,681	5500		462
Wednesday	-750	No Comm. Cntr	4,931	5500		0
Thursday	0		5,681	5500		181
Friday	0		5,681	5500		362
Saturday	-213	No Work or Office	5,468	5500		330
Sunday	-1026	No office or Comm. Cntr	4,655	5500		0
TOTAL			37,778	38,500		
Daily Dischar	ge (Equali	zed over 7 days) (e)	5,397	5,500		
Calculated Re	quired Equ	alization Volume (f)		462	gal.	
Selected Equa	lization vol	lume (g)		2,000	gal.	

(a) Reduction in flow on gived day for reason(s) listed

(b) Flow for day based on peak flow less reductions listed.

(c) Design Discharge to treatment and disposal system

(d) Water volume in Equalization Tank (at midnight) = Start Vol. + Daily Flow - Daily Discharge.

(e) First value is average of all days flow. Second value is DESIGN flow to treatment and dispersal system.

(f) Maximum value of "Volume in Tank".

(g) Working volume above pump minimum submergence and allowing for alarm volume (high water).

Project Name Innisfree Wastewater Upgrades

Updated: 8/12/2024 By: DJM

Table A-6. Detailed Water Meter Data for Amity Residential Building

		# Persons	Meter	Daily use	GPD per	
Date	Day of Wk	in House	Reading	(gal)	person	
7/28/2023	Fri		270107.3			
7/29/2023	Sat	7	270339.4	232.1	33.2	
7/30/2023	Sun	7	270557.8	218.4	31.2	
7/31/2023	Mon	7	270748.5	190.7	27.2	
8/1/2023	Tue	8	270988.6	240.1	30.0	
8/2/2023	Wed	8	271251	262.4	32.8	
8/4/2023	Fri	9	271867	308.0	34.2	
8/5/2023	Sat	9	272201.3	334.3	37.1	
8/6/2023	Sun	9	272472.8	271.5	30.2	
8/7/2023	Mon	9	272600.3	127.5	14.2	
8/8/2023	Tue	11	273063.5	463.2	42.1	
8/15/2023	Tue	10	275110	292.4	29.2	
8/22/2023	Tue	8	276870	251.4	31.4	
8/29/2023	Tue	8	278556	240.9	30.1	
8/31/2023	Thu	7	279036.8	240.4	34.3	
9/1/2023	Fri	8	279358	321.2	40.2	
9/2/2023	Sat	6	279589.6	231.6	38.6	
9/3/2023	Sun	6	279808	218.4	36.4	
9/4/2023	Mon	6	279932.9	124.9	20.8	
9/5/2023	Tue	8	280278.5	345.6	43.2	
9/6/2023	Wed	6	280450	171.5	28.6	
9/7/2023	Thu	6	280718.6	268.6	44.8	
9/8/2023	Fri	6	280947.3	228.7	38.1	
9/9/2023	Sat	6	281234.8	287.5	47.9	
9/10/2023	Sun	6	281475	240.2	40.0	
9/11/2023	Mon	7	281638.2	163.2	23.3	
9/12/2023	Tue	7	282028.1	389.9	55.7	
9/13/2023	Wed	7	282283.6	255.5	36.5	
9/14/2023	Thu	7	282458.2	174.6	24.9	
9/15/2023	Fri	7	282699.3	241.1	34.4	
9/16/2023	Sat	7	282897.2	197.9	28.3	
9/17/2023	Sun	7	283080.4	183.2	26.2	
9/18/2023	Mon	7	283279.8	199.4	28.5	
9/19/2023	Tue	7	283565.9	286.1	40.9	
9/20/2023		7	283834.9	269.0	38.4	
9/21/2023		7	284015.9	181.0	25.9	
9/22/2023		7	284203.8	187.9	26.8	
9/23/2023 9/24/2023		7	284471.7 284738.3	267.9 266.6	38.3 38.1	
9/25/2023		7	284978.4	200.0	34.3	
9/26/2023		7	285157.6	179.2	25.6	

Aqua Nova Engineering, PLC. 434-249-4497 File: Water Meters readings 2023-2024 w_analysis, Sheet: Amity

Project Name	Innisfree V	Vastewat	er Upgrades

Updated: 8/12/2024 By: DJM

Table A-6. Detailed Water Meter Data f	for Amity Residential Building, contin.
--	---

					Ballang, o
		# Persons	Meter	Daily use	GPD per
Date	Day of Wk	in House	Reading	(gal)	person
9/27/2023	Wed	7	285458.6	301.0	43.0
9/28/2023	Thu	7	285598.2	139.6	19.9
9/29/2023	Fri	8	285820.8	222.6	27.8
9/30/2023	Sat	8	286175.7	354.9	44.4
10/1/2023	Sun	8	286301.8	126.1	15.8
10/2/2023	Mon	8	286466.4	164.6	20.
10/3/2023	Tue	8	286765.7	299.3	37.4
10/4/2023	Wed	8	287282.7	517.0	64.
10/5/2023	Thu	8	287434.2	151.5	18.
10/6/2023	Fri	8	287730.3	296.1	37.
10/9/2023	Mon	8	288524.6	264.8	33.
10/10/2023	Tue	8	288887.7	363.1	45.
10/11/2023	Wed	8	289130	242.3	30.
10/12/2023	Thu	8	289315.8	185.8	23.
10/13/2023	Fri	8	289537.6	221.8	27.
10/14/2023	Sat	8	289809.4	271.8	34.
10/15/2023	Sun	8	289974.2	164.8	20.
10/16/2023	Mon	8	290236.7	262.5	32.
1/5/2024	Fri	8	321851.4	390.3	48.
1/26/2024	Fri	8	327780	282.3	35.
2/2/2024	Fri	8	329726.5	278.1	34.
2/9/2024	Fri	8	331788.4	294.6	36.
2/16/2024	Fri	8	334267	354.1	44.
2/22/2024	Thu	8	336262.3	332.5	41.
3/1/2024	Fri	8	338394	266.5	33.
3/15/2024	Fri	7	342173.9	270.0	38.
3/22/2024	Fri	8	344222.9	292.7	36.
3/29/2024	Fri	8	346297.6	296.4	37.
4/5/2024	Fri	8	348080	254.6	31.
4/12/2024	Fri	8	349960.4	268.6	33.
4/19/2024	Fri	8	351869.5	272.7	34.
4/26/2024	Fri	8	353767.8	271.2	33.
5/3/2024	Fri	8	355550.7	254.7	31.
5/10/2024	Fri	8	357150	228.5	
5/17/2024	Fri	8	358595.8	206.5	25.
5/24/2024	Fri	8	361718.3	446.1	55.
5/31/2024	Fri	8	363592.7	267.8	33.
6/7/2024	Fri	8	365346.1	250.5	31.
6/14/2024	Fri	8	367038.5	241.8	30.
6/21/2024	Fri	8	368829.8	255.9	32.
6/28/2024	Fri	8	370819.4	284.2	35.
7/5/2024	Fri	8	372753	276.2	34.

Project Name	Innisfree W	Nastewater Upgrades		
	Undated [.]	8/12/2024		

By: DJM

Table A-7. Detailed Water Meter Data for Meadow Residential Building

Date	Day of Wk	# Persons in House	Meter Reading	Daily use (gal)	GPD per person
7/20/2023		110000	0	(94)	2010011
7/21/2023		8	248	248.0	31.0
7/24/2023		8	1001	240.0	31.4
7/25/2023		8	1244.5	243.5	30.4
7/26/2023		8	1541	296.5	37.1
7/27/2023		8	1748.5	230.5	25.9
7/28/2023		8	2009	260.5	32.6
7/29/2023		8	2244.3	235.3	29.4
7/30/2023		8	2464.4	220.0	27.5
7/31/2023		7	2686	221.6	31.7
8/1/2023		8	3018	332.0	41.5
8/8/2023		8	4600.6	226.1	28.3
8/15/2023		8	6116	216.5	27.1
10/12/2023		7	6160.9	210.0	
10/13/2023		8	6317.4	156.5	19.6
10/14/2023		8	6499.2	181.8	22.7
10/15/2023		8	6697.3	198.1	24.8
10/16/2023		8	7042.1	344.8	43.1
1/5/2024		8	24152.6	211.2	26.4
1/26/2024		8	29210.5	240.9	30.1
2/2/2024		8	30989.3	254.1	31.8
2/16/2024	Fri	8	34315.7	237.6	29.7
2/22/2024		8	35881	260.9	32.6
3/15/2024	Fri	8	40687.4	218.5	27.3
3/22/2024	Fri	8	42105.6	202.6	25.3
3/29/2024	Fri	8	43553.7	206.9	25.9
4/5/2024	Fri	8	45082	218.3	27.3
4/12/2024	Fri	8	46430	192.6	24.1
4/19/2024	Fri	8	47690.3	180.0	22.5
4/26/2024	Fri	8	49167.8	211.1	26.4
5/3/2024	Fri	8	50551.6	197.7	24.7
5/10/2024	Fri	8	51934.4	197.5	24.7
5/17/2024	Fri	8	53290.2	193.7	24.2
5/24/2024	Fri	8	54559.2	181.3	22.7
5/31/2024	Fri	8	55959	200.0	25.0
6/7/2024	Fri	8	57369.1	201.4	25.2
6/14/2024	Fri	8	58938.6	224.2	28.0
6/21/2024	Fri	8	60405.6	209.6	26.2
6/28/2024	Fri	8	61726.9	188.8	23.
7/5/2024	Fri	7	62627.5	128.7	18.4

Aqua Nova Engineering, PLC. 434-249-4497 File: Water Meters readings 2023-2024 w_analysis, Sheet: Meadow

Project Name	Innisfree W	astewater Upgrades		
	Updated:	8/12/2024		

By: DJM

Table A-8. Detailed Water Meter Data for Trillium Residential Building

		# Persons in			GPD per
Date	Day of Wk	House	Meter Reading	Daily use (gal)	person
7/20/2023	Thu		0		
7/21/2023	Fri	6	167	167.0	27.8
7/24/2023	Mon	5	493	108.7	21.7
7/25/2023	Tue	5	588	95.0	19.0
7/26/2023	Wed	5	684	96.0	19.2
7/27/2023	Thu	5	799.5	115.5	23.1
7/28/2023	Fri	5	944.5	145.0	29.0
7/29/2023	Sat	5	1133	188.5	37.7
7/30/2023	Sun	5	1283.7	150.7	30.1
7/31/2023	Mon	5	1378.5	94.8	19.0
8/1/2023	Tue	5	1518	139.5	27.9
8/8/2023	Tue	5	2489	138.7	27.7
8/15/2023	Tue	5	3301.2	116.0	23.2
8/22/2023	Tue	5	4144	120.4	24.1
8/29/2023	Tue	3	4739.4	85.1	28.4
8/31/2023	Thu	4	4923.2	91.9	23.0
9/1/2023	Fri	4	5019.8	96.6	24.2
9/2/2023	Sat	4	5189.4	169.6	42.4
9/3/2023	Sun	3	5255.9	66.5	22.2
9/4/2023	Mon	3	5324.9	69.0	23.0
9/5/2023	Tue	3	5381	56.1	18.7
9/6/2023	Wed	3	5460	79.0	26.3
9/7/2023	Thu	3	5577.7	117.7	39.2
9/8/2023	Fri	3	5689	111.3	37.1
9/9/2023	Sat	3	5838.7	149.7	49.9
9/10/2023	Sun	3	5924.2	85.5	28.5
9/11/2023	Mon	3		68.7	22.9
9/12/2023		5	6144.8	151.9	30.4
9/13/2023	Wed	5	6246.4	101.6	20.3
9/14/2023		5		87.4	17.5
9/15/2023	Fri	5		114.4	22.9
9/16/2023		4		121.4	30.4
9/17/2023	Sun	4		151.8	37.9
9/18/2023	Mon	5		132.7	26.5
9/19/2023		5	6995.4	141.3	28.3
9/20/2023		5		85.1	17.0
9/21/2023		6		71.3	11.9
9/22/2023	Fri	5 5		137.5	27.5
9/23/2023 9/24/2023	Sat Sun	5		175.2 86.2	35.0 21.6
9/25/2023	Mon	4		38.3	9.6
Agua Nova Enginee		•		00.0	0.0

Aqua Nova Engineering, PLC. 434-249-4497 File: Water Meters readings 2023-2024 w_analysis, Sheet: Trillium

Project Name	Innisfree Wastewater Upgrades				
	Updated:	8/12/2024			

By: DJM

Table A-8. Detailed Water Meter Data for Trillium Residential Building, contin.

		# Persons in			GPD per
Date	Day of Wk	House	Meter Reading	Daily use (gal)	, person
9/26/2023	Tue	4	7705.7	116.7	29.2
9/27/2023	Wed	4	7779.3	73.6	18.4
9/28/2023	Thu	4	7860	80.7	20.2
9/29/2023	Fri	5	7946.4	86.4	17.3
9/30/2023	Sat	5	8058.2	111.8	22.4
10/1/2023	Sun	5	8112.4	54.2	10.8
10/2/2023	Mon	5	8189.7	77.3	15.5
10/3/2023	Tue	6	8332.8	143.1	23.8
10/4/2023	Wed	6	8535.8	203.0	33.8
10/5/2023	Thu	6	8680	144.2	24.0
10/6/2023	Fri	6	8813.4	133.4	22.2
10/9/2023	Mon	6	9219	135.2	22.5
10/10/2023	Tue	6	9351.5	132.5	22.1
10/11/2023	Wed	6	9465.4	113.9	19.0
10/12/2023	Thu	6	9573.4	108.0	18.0
10/13/2023	Fri	6	9754.4	181.0	30.2
10/14/2023	Sat	6	9900.7	146.3	24.4
10/15/2023	Sun	6	10018.8	118.1	19.7
10/16/2023	Mon	6	10087	68.2	11.4
1/5/2024	Fri	6	17156.3	87.3	14.5
1/26/2024	Fri	6	19700	121.1	20.2
2/2/2024	Fri	6	20471	110.1	18.4
2/9/2024	Fri	5	21283.6	116.1	23.2
2/16/2024	Fri	5	21948	94.9	19.0
2/22/2024	Thu	5	22554.7	101.1	20.2
3/1/2024	Fri	5	23025.4	58.8	11.8
3/15/2024	Fri	6	24231	86.1	14.4
3/22/2024	Fri	6	24970	105.6	17.6
3/29/2024	Fri	6	25632.6	94.7	15.8
4/5/2024	Fri	6	26339.7	101.0	16.8
4/12/2024	Fri	6	27044.8	100.7	16.8
4/19/2024	Fri	6	27566.3	74.5	12.4
4/26/2024	Fri	6	28291.1	103.5	17.3
5/3/2024		6	28824.8		12.7
5/10/2024	Fri	6		103.1	17.2
5/17/2024	Fri	6		101.5	16.9
5/24/2024	Fri	6	31073	116.6	19.4
5/31/2024	Fri	6		82.7	13.8
6/7/2024	Fri	6	32205.9	79.1	13.2
6/14/2024	Fri	6	32765.9	80.0	13.3
6/21/2024	Fri	6	33422	93.7	15.6
6/28/2024	Fri	6		209.1	34.9
7/5/2024	Fri	6	35522.8	91.0	15.2

Appendix **B**

- AdvanTex System Design Calculations
- Stage Three Treatment Biofilter calculations
- Nitrogen Dilution Calculations

Appendix B - Wastewater Treatment Design

Project Name:	Innisfree Village	- Alternative Onsite Sewag	Design input		
Updated:	8/1/2024	By: D. Maciolek		Important output	

Table B-1 Orenco AdvanTex® System Design (a)

				Stage 1 Advantex (b)			Stage 2 Advantex (b)			
	Septic Effluent			AX area		Estimated		AX area	Estimated	
Design	Loading		Loading	required	Effluent	Effluent	Loading	required	Effluent	
Parameter	Value (c)	Unit	Rate (d)	ft² (e)	Load (e)	Conc. (f)	Rate (d)	ft ² (e)	Conc. (f)	
Flow- Average	5,500	gpd	25	220	N/A	NA	75	73.3	N/A	
Flow - Peak (limit)	9,000	gpd	50	180	N/A	NA	125	72.0	N/A	
BOD - average	17.1	lb/d	0.04	426.4	1.3	27.9	0.02	64.0	5.6	
BOD - Peak	22.2	lb/d	0.08	277.2	1.7	22.2	0.04	41.6	4.4	
TKN/TN- Average	3.8	lb/d	0.014	269.3	0.4	8.2	0.007	53.9	0.8	
TKN/TN- Peak	4.9	lb/d	0.02	245.0	0.5	10.7	0.01	49.0	1.1	
	Minimum are	ea requir	ed (sq. ft.)	426.4	Minir	num area req	uired (sq. ft.)	73.3		
Advantex Module	Requirements			Stage 1			Stage 2			
	Textile plan area		No. of	Plan Area,				Textile Plan	Safety	
AX design:	per module, sq. ft.		Modules	sq.ft.	Safety Factor (g)			Area, sq.ft.	Factor (g)	
AX100	100		5	500	74%		1	100	27%	
AX 20	20	N.A.		0				0		

(a) Design of biological treamtment using Orenco Systems AdvanTex® textile trickling filter system.

(b) Each stage consisits of AdvanTex pods and dedicated recirculation tank.

(c) Design Flow and Loading criteria from Tables A-4.

(d) Recommended loading rates from Orenco Systems, Inc. 2017 Design/Engineering Binder.

- (e) Computed required area of Advantex AX unit . Actual area is determined by the number and size of AX units.
- (d) Estimated effluent load based on expected reduction in Stage 1 system.
- (f) Concentration equivalent computed from effluent load and flow.
- (g) Additional textile plan area provided compared to required computed area = (Provided Area Required Area/Required Area) x %

Appendix B - Wastewater Treatment Design

Project Name:	Innisfree Village - Alternative Onsite Sewage System			
Updated:	8/14/2024	By: <mark>D. Maciolek</mark>		
			Design input	
			Important output	

Table B-3. TOrC Removal Wetland

Flow	5,681	gpd	
Areal loading rate	18	gpd/sqft (based on Ref	1)
Media depth	24	inches	
Wetland Surface Area	320	sq. ft.	
Volume	640	cu. ft.	
Media:			
Biochar	15%	96 cu. ft.	4 cu. yd.
Hardwood chips	85%	544 cu. ft.	20 cu. yd.

Ref 1: Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Ashoori et. al. 20. Water Research

Volume 154, 1 May 2019, Pages 1-11

Table B-4. - Nitrogen Removal Wetland

Flow	5,681	gpd	
Volumetric loading rate	10.0	gpd/cu.ft. (based on Ref 2)	
Washed stone Vol.	568	cu. ft.	
Stone Surface Area	376	sq. ft.	
Min. Stone Layer Depth	1.5	ft	
Nitrate concentration reduction	30	mg/L	
Bio-Avail. Fraction of elemental sulfur	0.85		
Required Sulfur/nitrate	1		
Required Elemental Sulfur Dose	125	kg/yr <mark>277</mark> lbs/yr	

Ref 2:

Innisfree Village Alternative Onsite Sewage System -Engineering Report

Appendix C

• Sewer System Design Calculations

Appendix C - Sewer Collection System Calculations

	Innisfree Wastewater Upgrades
Design Aspect:	Collection System Calculations

pect:	Collectio	on Syste	m Calcu	lations	
	Updated:	8/7/2024	Reviewed	8/12/2024	
	By:	CBH	By:	DJM	

Table C-1. Septic Tank Effluent Gravity Collection System Calculations -PEAK FLOW (a)

Manning's "n" Coefficient for PVC coated in sewer scum

	Elevation Difference		Min. Pipe inside diameter,	Pipe	Grav. Velocity,	Max. Gravity flow,	feeding into Seg. from grav. Connect.	Gravity flow per person,	Gravity flow	Pumped flow	peak flow	Max.%	
Segment name (b)	ft (c)	Slope (c)	in.	length, ft	ft/s	gpm (d)	(e)	gpm (f)	(gpm)	(gpm)	(gpm)	Pipe fill	Notes
Kenmare to Laurel	-24	-5.5%	3.042	433	5.07	115	7	2	14	25	39	34%	(g)
Laurel to Windsong	-27	-4.3%	3.975	625	5.35	207	13	2	26	0	65	31%	
Windsong to Amity	-12	-3.2%	3.975	375	4.60	178	12	2	24	25	114	64%	
Amity to Community Cntr	-13	-3.0%	5.915	433	5.81	498	9	2	18	0	132	27%	
Community Cntr to Office	-10	-4.2%	5.915	236	6.90	591	74	0.5	37	0	169	29%	(h)
Office to Red Star pump	-9	-3.0%	5.915	305	5.76	494	31	0.5	15.5	0	184.5	37%	(i)
Redstar to Bittersweet	-2	-2.2%	5.915	91	4.97	426	0	2	0	28	212.5	50%	
Bittersweet to Walnut Lvl	-8	-2.1%	5.915	385	4.84	385	6	2	12	0	224.5	54%	
Walnut Lvl to WWTS	-5	-3.3%	5.915	153	6.06	385	6	2	12	1	237.5	46%	

(a) Gravity sewer "Main" that starts where pumped effluent from Trillium, Halcyon & Oakwood combines with flow from Kenmare and becomes gravity sewer.

(b) Segment start and end points are named for nearest building septic effluent pipe connection. WWTS is the wastewater treatment system.

(c) Negative indicates elevation drop from start to end. Calculated slope is the min. over entire length of segment. Slope to be constant between cleanouts.

(d) Peak instantanous gravity flow rate from septic tanks is assumed to be attenuated by the septic tank.

(e) Residents or users in buildings with sewer connecting to sewer main segment by gravity flow lateral.

(f) Peak instantanous gravity flow rate from septic tanks is assumed to be attenuated by the septic tank.

(g) Pumped flow for this segment is a combination of STEP Pump Station 1 (SPS1) and STEP Pump Station 2 (SPS2) running at the same time.

(h) Maximum community center occupancy. Due to lighter use patterns the GPM instantnous flow per person is reduced.

(i) Maximum office and workshop personnel. Due to lighter use patterns, the GPM instantnous flow per person is reduced.

System Curve - Head Loss Calculations

Appendix C - Sewer Collection System Calculations

Project Name:	Innisfre	e Village	e Wastev	vater Syste	em Ugrad	e
Pumps and Piping	SPS1-Du	iplex Sep	tic Efflue	nt pumps -	to Sewer	Main
					Updated:	7/31/2024
Desired Pump Flow		Avg.			By:	CBH
gallons per minute		18.0				
Simplex Pump (No Manifold)	Parameter	Pump Outlet to Transfer	Transfer* pipe length			
Pip	e length, ft	8	1130			
Pipe diam.	, inside (in)	1.533	1.533			
Hazen-William	s Coeff., C	120	120			
* Piping from pump basin to	discharge poin	t		-		
Pump Lift				*Additional	Head, ft	
SPS1 to SPS2	Min. lift, ft	0	MIN.	0		
PS 1 to Eq. tank	Max. lift, ft	3	Max.	0		

Minor Losses	Nur	nber of fitti	ings	
Туре	к	Pump Outlet to Trnsfer**	Transfer piping	Transfer to discharge
Entrance to manifold	0.5	0		
Ball Valve - fully open	0.1	1		
Gate Valve - half open	13		0	
Check Valve	2.5	1	0	
Tee - line flow	0.6		0	
Tee - branch flow	1.6	1		
90° Elbow - regular	1.0	3	1.0	
45° Elbow - med. rad	0.25		0	
Open pipe disch.	1.0		1.0	
Flow Meter - insertion	8		0	
Sum o	of K values	7.2	2.0	0.0

		Water Velo	city in:	Dynamic Losses, ft			Total Head		
		Outlet	Transfer	Pump to	Transfer	Transfer Pi	pe to Disch		
gpm	cfs	Velocity, ft/s	Velocity, ft/s	Minor Losses	Pipe Friction	Minor Losses	Pipe Friction	Min. lift	Max. lift
0	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.0	3.0
2	0.00	0.3	0.3	0.01	0.01	0.00	0.75	0.8	3.8
4	0.01	0.7	0.7	0.05	0.02	0.02	2.71	2.8	5.8
6	0.01	1.0	1.0	0.12	0.04	0.03	5.74	5.9	8.9
8	0.02	1.4	1.4	0.22	0.07	0.06	9.78	10.1	13.1
10	0.02	1.7	1.7	0.34	0.10	0.09	14.78	15.3	18.3
12	0.03	2.1	2.1	0.49	0.15	0.14	20.72	21.5	24.5
14	0.03	2.4	2.4	0.66	0.20	0.18	27.57	28.6	31.6
16	0.04	2.8	2.8	0.86	0.25	0.24	35.30	36.7	39.7
18	0.04	3.1	3.1	1.09	0.31	0.30	43.91	45.6	48.6
20	0.04	3.5	3.5	1.35	0.38	0.38	53.37	55.5	58.5
22	0.05	3.8	3.8	1.63	0.45	0.45	63.67	66.2	69.2
24	0.05	4.2	4.2	1.95	0.53	0.54	74.80	77.8	80.8
26	0.06	4.5	4.5	2.28	0.61	0.63	86.76	90.3	93.3
28	0.06	4.9	4.9	2.65	0.70	0.74	99.52	103.6	106.6
30	0.07	5.2	5.2	3.04	0.80	0.84	113.08	117.8	120.8
32	0.07	5.6	5.6	3.46	0.90	0.96	127.44	132.8	135.8
34	0.08	5.9	5.9	3.90	1.01	1.08	142.59	148.6	151.6
36	0.08	6.3	6.3	4.38	1.12	1.22	158.51	165.2	168.2
38	0.08	6.6	6.6	4.88	1.24	1.35	175.20	182.7	185.7

Appendix C - Sewer Collection System Calculations

Project Name:															
Pumps and Piping	SPS1-Du	i <mark>plex Sep</mark>	tic Efflue	ent pumps -						Sys	tem Curve	- Head Los	s Calculat	ions	
			1		Updated: 7/31/2024										
Desired Pump Flow		Avg.			By: CBH			Water Velo				Losses, ft		<u>Total</u>	Head
gallons per minute		23.0		-				Outlet	Transfer	Pump to	Transfer	Transfer P	ipe to Disch		
Simplex Pump (No		Pump Outlet to	Transfer*					Velocity,	Velocity,	Minor	Pipe	Minor	Pipe		
	Parameter	-	pipe length			gpm	cfs	ft/s	ft/s	Losses	Friction	Losses	Friction	Min. lift	Max.
,			0			÷.		-							
	e length, ft	8 1.533	680 1.533			0	0.00	0.0	0.0	0.00	0.00	0.00	0.00 0.45	0.0	3.0
Pipe diam.,	• • •					2	0.00	0.3	0.3	0.01	0.01	0.00		0.5	3.5
Hazen-Williams Piping from pump basin to		120	120	J		4	0.01	0.7	0.7	0.05	0.02	0.02	1.63	1.7	4.7
	uischarge poli	in in				6	0.01	1.0	1.0	0.12	0.04	0.03	3.45	3.7	6.7
Pump Lift			l	*Additional	Head, ft	8	0.02	1.4	1.4	0.22	0.07	0.06	5.88	6.2	9.2
SPS1 to SPS2	Min. lift, ft		MIN.	0		10	0.02	1.7	1.7	0.34	0.10	0.09	8.90	9.4	12.4
PS 1 to Eq. tank	Max. lift, ft	3	Max.	0		12	0.03	2.1	2.1	0.49	0.15	0.14	12.47	13.2	16.
						14	0.03	2.4	2.4	0.66	0.20	0.18	16.59	17.6	20.
					_	16	0.04	2.8	2.8	0.86	0.25	0.24	21.24	22.6	25.
Minor Losses	Nun	nber of fitti	ngs			18	0.04	3.1	3.1	1.09	0.31	0.30	26.42	28.1	31.1
		Pump	T	T											
Туре	к	Outlet to Trnsfer**		Transfer to discharge		20	0.04	3.5	3.5	1.35	0.38	0.38	32.12	34.2	37.2
Type Entrance to manifold	к 0.5		piping	uischarge		20	0.04	3.5 3.8	3.5 3.8	1.35		0.38	32.12	34.2 40.9	-
		0				22					0.45				43.9
Ball Valve - fully open	0.1	1					0.05	4.2	4.2	1.95	0.53	0.54	45.01	48.0	51.0
Gate Valve - half open	13		0			26	0.06	4.5	4.5	2.28	0.61	0.63	52.21	55.7	58.7
Check Valve Fee - line flow	2.5	1	0			28	0.06	4.9	4.9	2.65	0.70	0.74	59.89	64.0	67.0
	0.6		0			30	0.07	5.2	5.2	3.04	0.80	0.84	68.05	72.7	75.
Fee - branch flow	1.6 1.0	1	1.0			32 34	0.07 0.08	5.6 5.9	5.6 5.9	3.46 3.90	0.90 1.01	0.96 1.08	76.69 85.80	82.0 91.8	85. 94.
90° Elbow - regular 15° Elbow - med. rad	0.25	3	1.0			34 36	0.08	5.9 6.3	5.9 6.3	3.90 4.38	1.01	1.08	85.80 95.38	91.8 102.1	94.
Dpen pipe disch.	0.25		1.0			36	0.08	6.3 6.6	6.3 6.6	4.38 4.88	1.12	1.22	95.38 105.43	102.1	105.
	-					30	0.08	0.0	0.0	4.00	1.24	1.30	105.43	112.9	115.
Flow Meter - insertion	8 f K values	7.2	0 2.0	0.0											
Sumo	i r. vaiues	1.2	2.0	0.0	<u> </u>										

Pumps and Piping SPS4 Duplex Effluent Pumps to Sewer Main System Curve - Head Loss Calculations Updated: /31/2024 CBH Water Velocity in: Desired Pump Flow By: Total Head Avg. Dynamic Losses, ft gallons per minute 28.0 Outlet Transfer Pump to Transfer Transfer Pipe to Disch Fransfer ump Velocity, Velocity Simplex Pump (No Outlet to pipe Minor Pipe Minor Pipe Paramete Manifold) Transfer length cfs ft/s ft/s Losses Friction Losses Friction Min. lift Max. lift apm 430 0.00 0.0 0.0 0.00 0.00 0.00 0.00 3.0 Pipe length, ft 0 0.0 1.533 120 2 Pipe diam., inside (in) 1.533 120 0.00 0.3 0.3 0.01 0.01 0.00 0.29 0.3 3.3 Hazen-Williams Coeff., C 4 0.01 0.7 0.7 0.05 0.02 0.02 1.03 1.1 4.1 Piping from pump basin to discharge point 6 0.01 1.0 1.0 0.12 0.04 0.03 2.18 2.4 5.4 Pump Lift *Additional Head, ft 8 0.02 1.4 1.4 0.22 0.07 0.06 3.72 4.1 7.1 10 SPS1 to SPS2 Min. lift, ft 0 MIN. 0 0.02 1.7 1.7 0.34 0.10 0.09 5.63 6.2 9.2 12 PS 1 to Eq. tank Max. lift. ft 3 Max 0 0.03 21 21 0 4 9 0 15 0 14 7 89 8.7 11.7 14 0.03 2.4 2.4 0.66 0.20 0.18 10.49 11.5 14.5 16 2.8 0.25 13.43 0.04 2.8 0.86 0.24 14.8 17.8 Number of fittings 18 Minor Losses 0.04 3.1 3.1 1.09 0.31 0.30 16.71 18.4 21.4 Pump Outlet to Transfer Transfer to Туре Trnsfer' discharge 20 κ piping 0.04 3.5 3.5 1.35 0.38 0.38 20.31 22.4 25.4 Entrance to manifold 0.5 0 22 0.05 3.8 3.8 1.63 0.45 0.45 24.23 26.8 29.8 Ball Valve - fully open 0.1 24 0.05 4.2 4.2 1.95 0.53 0.54 28.47 31.5 34.5 1 26 4.5 2.28 0.61 0.63 33.01 36.5 39.5 Gate Valve - half open 13 0 0.06 4.5 Check Valve 2.5 1 0 28 0.06 4.9 4.9 2.65 0.70 0.74 37.87 42.0 45.0 0 30 0.07 5.2 5.2 3.04 0.80 0.84 43.03 47.7 Tee - line flow 0.6 50.7 32 Tee - branch flow 1.6 1 0.07 5.6 5.6 3.46 0.90 0.96 48.50 53.8 56.8 34 3.90 0.08 1.01 1.08 54.26 63.3 90° Elbow - regular 5.9 5.9 60.3 1.0 1.0 36 0 0.08 6.3 4.38 1.12 1.22 60.32 67.0 70.0 45° Elbow - med. rad 0.25 6.3 1.0 38 4.88 0.08 6.6 1.24 1.35 66.67 Open pipe disch. 1.0 6.6 74.1 77.1 Flow Meter - insertion 8 0 Sum of K values 7.2 2.0 0.0 STEP Tank 2 - SPS2 to STEG 60 - System- Min. Lift -X-Liberty FL50 50 Ø Ο £ 40 **Fotal Dynamic Head** 30 20

Flow Rate, gpm

9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

5 6 7 8

Appendix C - Sewer Collection System Calculations

Project Name: Innisfree Village Wastewater System Ugrade

10

0

Appendix D

- Drainfield Design Calculations- Area and Trench Design
- LPD Detail Calculations (Using OSI calculation tool)
- Groundwater Mounding Model Results

Appendix D - Effluent Dispersal System Design and Configuration

Project:	Innisfree Village - Combined Sewage AOSS									
Scenario:	Residences, Office, Workshops and Community Center									
Updated:	5/6/2024	By:	David Ma	ciolek						
Checked	8/12/2024	By:	СВН							

Table D-1. Primary Effluent Dispersal Area - LPD Trenches

Design F	low to Mass D	Drainfield, gpd	5,500	5,500 equalized flow from table A-2, Flow Equalization Calcluations						
	Estimated	Loading Rate	Area	Area & Dimens. for Absorbtion Trenches Field (d) Distance Approx.						Effluent
Field	Perc. Rate (a)	TL3 Effluent	Width	Design	Number of	Adsorp.	Absorption	Trench CLs	Field Area	Flow Alloc.
Area	mpi	gpd/ft ²	ft	Length, ft	Trenches	Area (c), ft ²	Capacity, gpd	ft (e)	ft ²	(f)
Α	60	0.94	3	75	9	2,025	1,904	9	5,175	33%
В	85	0.61	3	85	12	3,060	1,867	9	8,160	32%
С	65	0.83	3	100	8	2,400	1,992	9	6,000	35%
TOTAL						7,485	5,762			100%

(a) Design Percolation Rate developed from soil profile descriptions and Ksat results.

(b) Per Virginia Sewage Handling and Disposal Regulations, 12VAC5-610-950, Table 5.5.

(c) Adsoprtion area is total trench bottom area.

(d) Maximum effluent application capacity equal to Absorption area times Loading Rate (hydraulic loading rate).

(e) Distance between trench centers. Three times trench width for slopes <20% ,Sewage Handling and Disposal

Regulations, 12VAC 5-610, Section 950, F., page 96. (f) Effective percent of total flow allocated to drainfield area listed.

Table D-2. Reserve Dispersal Area - LPD Trenches

Desi	gn Flow to Mass	Drainfield, gpd	5,500	equalized flov	v from table A-	2, Flow Equali	zation Calcluati	w to Mass Drainfield, gpd 5,500 equalized flow from table A-2, Flow Equalization Calcluations							
Field	Estimated	Loading Rate		& Dimens. for <i>i</i>			Field (c)	Distance	Approx						
Field	Perc. Rate (a)	TL3 Effluent	Width	Design	Number of	Adsorp.	Absorption	Trench CLs	Field Area ft ²						
Area	mpi	gpd/ft ² (b)	ft	Length, ft	Trenches	Area (c), ft ²	Capacity, gpd	ft (d)		Note					
D- new	50	1.00	2	65	10	1,300	1,300	6		Area downhill of barn uphill of Farm Well					
Comm. Cntr	115	0.35	3	100	32	9,600	3,360	9		Existing drainfield for Community Center					
Farm Blg (e)	100	0.46	3	100	5	1,500	690	9		Existing drainfield constructed in 2016					
TOTAL						12,400	5,350								

(a) Rate for Area D is from soil profile descriptions and Ksat results. Rates for Community Center and Farm Bldg are from existing COSS pern

(b) Application rate Per Virginia Sewage Handling and Disposal Regulations, 12VAC5-610-950, Table 5.5.

(c) Adsoprtion area is total trench bottom area. Adsoprtion Capacity is Adsorption area times Loading Rate (hydraulic loading rate).

(d) Distance between trench centers. Three times trench width for slopes <20% ,Sewage Handling and Disposal Regulations, 12VAC 5-610, Section 950, F., page 96.

(e) "Red Star" Farm building used for egg processing. New drainfield constructed in 2016.

Pump Selection for a Pressurized System - Multiple Family Residence Project

Innisfree Village / LPD dispersal area A

Figure D-1 - Drainfield A LPD Detailed Calculations

Parameters

Discharge Assembly Size	2.00	inches
Transport Length	1550	feet
Transport Pipe Class	40	
Transport Line Size	2.00	inches
Distributing Valve Model	None	
Max Elevation Lift	-23	feet
Manifold Length	100	feet
Manifold Pipe Class	40	
Manifold Pipe Size	2.00	inches
Number of Laterals per Cell	3	
Lateral Length	75	feet
Lateral Pipe Class	40	
Lateral Pipe Size	1.50	inches
Orifice Size	1/8	inches
Orifice Spacing	2.25	feet
Residual Head	5	feet
Flow Meter	2.0	inches
'Add-on' Friction Losses	12	feet

Calculations

Minimum Flow Rate per Orifice	0.43	gpm
Number of Orifices per Zone	102	
Total Flow Rate per Zone	44.5	gpm
Number of Laterals per Zone	3	
% Flow Differential 1st/Last Orifice	3.6	%
Transport Velocity	4.3	fps

Frictional Head Losses

Loss through Discharge	3.9	feet
Loss in Transport	50.0	feet
Loss through Valve	0.0	feet
Loss in Manifold	0.9	feet
Loss in Laterals	0.4	feet
Loss through Flowmeter	2.3	feet
'Add-on' Friction Losses	12.0	feet

Pipe Volumes

Vol of Transport Line	270.2	gals
Vol of Manifold	17.4	gals
Vol of Laterals per Zone	23.8	gals
Total Volume	311.4	gals

Minimum Pump Requirements

Design Flow Rate	44.5	gpm
Total Dynamic Head	51.6	feet

PumpData

Liberty FL-73M-2 208V, 3 Phase, Full Load Amps: 7.5

Appendix D

Pump Selection for a Pressurized System - Multiple Family Residence Project

Innisfree Village / LPD dispersal area B

Figure D-2 - Drainfield B LPD Detailed Calculations

Parameters

Discharge Assembly Size	2.00	inches
Transport Length	1560	feet
Transport Pipe Class	40	
Transport Line Size	2.00	inches
Distributing Valve Model	None	
Max Elevation Lift	-25	feet
Manifold Length	120	feet
Manifold Pipe Class	40	
Manifold Pipe Size	2.00	inches
Number of Laterals per Cell	3	
Lateral Length	80	feet
Lateral Pipe Class	40	
Lateral Pipe Size	1.50	inches
Orifice Size	1/8	inches
Orifice Spacing	2.5	feet
Residual Head	5	feet
Flow Meter	2.0	inches
'Add-on' Friction Losses	12	feet

Calculations

Minimum Flow Rate per Orifice	0.43	gpm
Number of Orifices per Zone	99	
Total Flow Rate per Zone	43.2	gpm
Number of Laterals per Zone	3	
% Flow Differential 1st/Last Orifice	3.6	%
Transport Velocity	4.2	fps

Frictional Head Losses

Loss through Discharge	3.7	feet
Loss in Transport	47.6	feet
Loss through Valve	0.0	feet
Loss in Manifold	1.0	feet
Loss in Laterals	0.4	feet
Loss through Flowmeter	2.2	feet
'Add-on' Friction Losses	12.0	feet

Pipe Volumes

Vol of Transport Line	271.9	gals
Vol of Manifold	20.9	gals
Vol of Laterals per Zone	25.4	gals
Total Volume	318.2	gals

Minimum Pump Requirements

Design Flow Rate	43.2	gpm
Total Dynamic Head	47.0	feet

PumpDataLegendLiberty FL-73M-2208V, 3 Phase,Full Load Amps: 7.5

Appendix D

Pump Selection for a Pressurized System - Multiple Family Residence Project

Innisfree Village / LPD dispersal area C

Figure D-3 - Drainfield C- LPD Detailed Calculations

Parameters

Discharge Assembly Size	2.00	inches
Transport Length	1665	feet
Transport Pipe Class	40	
Transport Line Size	2.00	inches
Distributing Valve Model	None	
Max Elevation Lift	-31	feet
Manifold Length	80	feet
Manifold Pipe Class	40	
Manifold Pipe Size	2.00	inches
Number of Laterals per Cell	2	
Lateral Length	99	feet
Lateral Pipe Class	40	
Lateral Pipe Size	1.50	inches
Orifice Size	1/8	inches
Orifice Spacing	2	feet
Residual Head	5	feet
Flow Meter	2.0	inches
'Add-on' Friction Losses	12	feet

Calculations

Minimum Flow Rate per Orifice	0.43	gpm
Number of Orifices per Zone	100	
Total Flow Rate per Zone	44.4	gpm
Number of Laterals per Zone	2	
% Flow Differential 1st/Last Orifice	9.5	%
Transport Velocity	4.3	fps

Frictional Head Losses

Loss through Discharge	3.9	feet
Loss in Transport	53.3	feet
Loss through Valve	0.0	feet
Loss in Manifold	0.7	feet
Loss in Laterals	1.1	feet
Loss through Flowmeter	2.3	feet
'Add-on' Friction Losses	12.0	feet

Pipe Volumes

Vol of Transport Line	290.2	gals
Vol of Manifold	13.9	gals
Vol of Laterals per Zone	20.9	gals
Total Volume	325.1	gals

Minimum Pump Requirements

Design Flow Rate	44.4	gpm
Total Dynamic Head	47.3	feet

PumpDataLegendLiberty FL-73M-2208V, 3 Phase,Full Load Amps: 7.5

Innisfree Village Alternative Onsite Sewage System -Engineering Report

APPENDIX E

- Soils Evaluation SPD and Ksat Summary
- Ksat Testing Data sheets

Project:	Innisfree Vi			
Updated:	8/14/2024	By:	David M	laciolek

Table E-1.	Drainfield	Soil Evaluat	ion Summary
------------	------------	--------------	-------------

ſ				Depth,	
	Test No. (a)	Date	Horizon	in.	Description
Drai	infield (Cell)	A - North S	ection of	Lower A	rea
A	SPD 1, Pit	13-Oct-23		0-4	Reddish brown (5YR 4/4) LOAM; friable; granular structure; coarse quartz sands
^	01 0 1, 1 10	10 000 20	Λþ	0 4	and small gravels present; abundant fine and medium roots; abundant fine and
					medium pore spaces; abrupt smooth boundary.
			BA	4-9	Yellowish red (5YR 4/6) CLAY LOAM; light grey coarse quartz sands present;
			2		friable; medium subangular blocky; abundant fine-med roots; trace micas
					present; abrupt smooth boundary.
			Bt1	9-34	Red (10R 4/6) CLAY LOAM; ~5% yellowish red (5YR 5/8) saprolitic greenstone
					gravels; friable and slightly loose; medium subangular blocky; abundant fine-med
					roots; abundant fine-med pores; abrupt smooth boundary.
			2Bt2	34-66	Red (10R 4/8) CLAY LOAM; friable; weak medium subangular blocky; olive yellow
					saprolitic greenstone gravels, white quartz gravels, and grey friable weathered
					gneiss gravels; fine roots present; fine-medium pores present; 5-10% weathered
					gravels; slightly hard; micaceous.
Α	SPD 2, pit	13-Oct-23	Ар	0-4	Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular structure;
					abundant fine roots; abundant fine and medium pores; trace subangular gravels;
					abrupt smooth boundary.
			Bt1	4-24	Red (10YR 5/8) CLAY LOAM; medium subangular blocky; 10-15% olive yellow (2.5Y
					6/6) weathered greenstone and grey gneiss gravels up to 2" diameter present;
					loose; friable; common fine-med roots; abundant fine-med pores; abrupt smooth
					boundary.
			Bt2	24-64	
					present; subrounded coarse sands common; trace mica; abrupt smooth
					boundary.
Α	SPD 3, pit	06-Feb-24	Ар	0-4	Reddish brown (5YR 4/4) CLAY LOAM; granular structure; abundant fine and
			<u> </u>		medium roots; abundant fine and medium pores. Yellowish red (5YR 4/6) CLAY LOAM; few weathered gravels; medium subangular
			BA	4-10	blocky structure; loose consistency; friable; common fine and medium roots;
					abundant fine-med pores.
			Bt1	10.00	· · · · · · · · · · · · · · · · · · ·
			סנו	10-92	medium subangular blocky; slightly loose; friable; fine and medium roots
					common; fine-medium pores abundant; mica present; clay films; abrupt wavy
			0.040	00.40	boundary. Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky structure; slightly
			2Bt2	32-48	hard; friable; roots present; pores present; micaceous
					חמות, חומטוב, וסטוג אופגפות, אסופג אופגפות, חוונמנפטטג

Test No. (a) Date Horizon in. Description Drainfield Cetl A -continued A SPD 4 Pit 13-Oct-23 Ap 0-6 Reddish brown (5YR 4/4) LOAM; trace coarse quartz sands and small gr. present; fine subangular blocky- to granular structure; abundant fine root abundant fine and medium pores; abrupt smooth boundary. Bt1 6-18 Red (2.5YR 4/6) CLAY LOAM; medium subangular blocky, olive yellow (2 weathered greenstone gravels up to 2" diameter and weathered geness i present; 10-20% weathered gravel content; loose; friable; common fine abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oli weathered greenstone and grey weathered gneiss gravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky; to granular structure; friable; fine roots; abundant fine med pores; trace subangula abrupt smooth boundary. 2Bt2 18-51 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yell of 6/6) weathered greenstone and white quartz gravels present; loose; friable; fine med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; Modium subangular blocky; clovey; saproth bo					Depth,						
A SPD 4 Pit 13-Oct-23 Ap 0-6 Reddish brown (5YR 4/4) LOAM; trace coarse quartz sands and small gr. present; fine subangular blocky- to granular structure; abundant fine rod abundant fine and medium pores; abrupt smooth boundary. Bt1 6-18 Red (2.5YR 4/6) CLAY LOAM; medium subangular blocky; olive yellow (2 weathered greenstone gravels up to 2" diameter and weathered gneiss j present; 10-20% weathered gravel content; loose; friable; common fine abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oli weathered greenstone and grey weathered greenst sg ravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered greenstone and weathered granular stru abundant fine roots; abundant fine med medium pores; trace subangula abrupt smooth boundary. A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (SYR 4/4) LOAM; fine subangular blocky; -to granular stru abundant fine-med pores; imace ous abundant fine roots; abundant fine-med pores; brace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; -5% olive yells of 6/8 weathered greenstone and white quartz gravels present; loose; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. Bt1 5-18 Red (10YR 5/8) CLAY; LOAM; medium subangular blocky; olive yells about boundary. Bt1 5-18 Red (10YR 5/8) CLAY;	·	Test No. (a)	Date	Horizon		Description					
A SPD 5 - pit 13-Oct-23 Ap 0-5 Red (10?K 7/4) CLAY LOAM; medium subangular blocky; rolive yellow (2 weathered greenstone gravels, fine-medium pores; micaceous; subrout mooth boundary. A SPD 5 - pit 13-Oct-23 Ap 0-5 Red (10?K 7/4) CLAY LOAM; medium subangular blocky; rolive yellow (2 weathered greenstone and grey weathered greenstone and white quartz gravels present; micaceous abrupt smooth boundary. A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky; to granular structure; abundant fine mod ium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY; medium subangular blocky; to granular structure; infable; fine common; fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; olive yell abrupt smooth boundary. 2Bt3 32-62 Red (10YR 5/8) CLAY; medium subangular blocky; rolive yell saprolitic greenstone gravels, whilt quartz gravels present; moose; firable; fine common; fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; roli	Drain	nfield Cell A	-continued	1							
A Bt1 6-18 Red (2.5YR 4/6) CLAY LOAM; medium subangular blocky; olive yellow (2) weathered greenstone gravels up to 2" diameter and weathered greenstone and grey weathered greenstone simple	A	SPD 4 Pit	13-Oct-23	Ар	0-6	Reddish brown (5YR 4/4) LOAM; trace coarse quartz sands and small gravels					
Bt1 6-18 Red (2.5YR 4/6) CLAY LOAM; medium subangular blocky; olive yellow (2 weathered greenstone gravels up to 2" diameter and weathered gneiss is present; 10-20% weathered gravel content; loose; friable; common file abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oil weathered greenstone and grey weathered gneiss gravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Red (10YR 5/8) CLAY LOAM; fine subangular blocky trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered greenstone and white quartz gravels present; micaceous abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY; medium subangular blocky; -5% olive yell of/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weal A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 Red (2.5YR 4/6) CLAY LOA						present; fine subangular blocky- to granular structure; abundant fine roots;					
 weathered greenstone gravels up to 2" diameter and weathered greiss is present; 10-20% weathered gravels content; loose; friable; common fine abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oli weathered greenstone and grey weathered greiss gravels; trace subroun coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; -5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; friable; weak medium subangular blocky; olive yell cof/6) weathered gravels common; -5-10% weathered gravels present; smooth boundary. 2Bt2 16-32 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quart gravels common Bt2 36-62 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- 4/18/2024 Ap 0-10 Storng brown (7.5YR/4/6) CLAY LOAM; micaceous; solo and friable 2Bt2 30-40 Yellowi						abundant fine and medium pores; abrupt smooth boundary.					
Present; 10-20% weathered gravel content; loose; friable; common fine abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oil weathered greenstone and grey weathered gness gravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky: to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yell of 6/6) weathered greenstone and white quartz gravels present; lioose; friable; fine common; fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; rolive yell of 6/6) weathered greenstone and white quartz gravels present; smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; rolive yell abundant fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY LOAM; micaceous; subrounded gravels common Bt2 3Bt10 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 3Bt 19A- 4/18/2024 Ap 0				Bt1	6-18	Red (2.5YR 4/6) CLAY LOAM; medium subangular blocky; olive yellow (2.5Y 6/6)					
abundant fine-med pores; micaceous; abrupt smooth boundary. 2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oli weathered greenstone and grey weathered gneiss gravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; fria abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; structure; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weal smooth boundary. A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weak saprolitic greenstone gravels, white quartz gravels, and grey friable weak saprolitic greenstone gravels, white quartz gravels, and grey friable weak saprolitic gr						weathered greenstone gravels up to 2" diameter and weathered gneiss gravels					
2Bt2 18-60 Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace oli weathered greenstone and grey weathered gneiss gravels; trace subrou coarse quartz sands; friable; fine roots common above 42" and present that; 5-10% weathered gravels; fine-medium pores present; micaceous A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky: to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med nores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY: medium subangular blocky; rolive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; rolive yell common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weal sapulation gravels; abundant fine-med pores; abrupt smooth boundary. A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62						present; 10-20% weathered gravel content; loose; friable; common fine roots;					
A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; toose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; toose; frial abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; v5% olive yello 6/6) weathered greenstone and white quartz gravels present; toose; frial abundant fine-med pores; abrupt smooth boundary. 2Bt3 32-62 Red (10YR 7/8) CLAY; medium subangular blocky; olive yello common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/8) SILTY CLAY LOAM; micaceous; subrounded gravels common Bt2 3B 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) CLAY LOAM; micaceous SB 19A- 4/18/2024 Ap 0-10 Strong brown (5YR 4/6) CLAY LOAM; micaceous SB 19A- 4/18/2024											
A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; v5% olive yello common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yel saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal saprolitic greenstone gravels, white quartz gravels, and grey friable weal (2.5YR 4/6) LOAM; granular structure; abundant roots				2Bt2	18-60	Red (2.5YR 4/6) CLAY LOAM; weak medium subangular blocky; trace olive yellow					
A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular struabundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; firal abundant fine-med roots; abundant fine-med pores; abrupt smooth bou for weathered greenstone and white quartz gravels present; finale; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; volve yell common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weat smooth boundary. A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring B11 10-36 Red (2.5YR 4/8) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- 4/18/2024 Ap 0-10 Reddish brown (5YR 4/4) LOAM Secous and friable Boring B11 10-30 Yellowish red (5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- 4/18/2024 Ap 0-10 Strong brown											
A SPD 5 - pit 13-Oct-23 Ap 0-5 Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular stru abundant fine roots; abundant fine and medium pores; trace subangula abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth bou 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; rolive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med pores; common; rolive yello common; fine-med pores common; rolive yello common; fine-med pores common; rolive yello smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; medium subangular blocky; structure; friable; fine common; fine-med pores common; rolive yello saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat Red (2.5YR 4/6) CLAY; friable; weak medium subangular blocky; olive yello saprolitic greenstone gravels, white quartz gravels, and grey friable weat Red (2.5YR 4/8) SILTY CLAY LOAM micaceous; subrounded gravels common Bt2 36-62 SB 19A- boring 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) CLAY LOAM; micaceous SB 19A- boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY UAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky; refrained pores; abrupt smooth boundary. 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky structure; friable; fine common; fine-med pores common; ref-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels common Bt2 36-62 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 Red (2.5YR 4/6) CLAY LOAM; micaceous SB 19A- 4/18/2024 Ap 0-10 SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Test Depth, in.<											
abrupt smooth boundary. Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med roots; abundant fine-med pores; abrupt smooth bou 2Bt2 16-32 Red (10YR 5/8) CLAY; medium subangular blocky structure; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yello saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravel, and grey friable grey grey saprolitic greenstone gravels, white quartz gravel, and grey friable grey grey grey grey grey grey grey grey grey	A S	SPD 5 - pit	13-Oct-23	Ар	0-5	Reddish brown (5YR 4/4) LOAM; fine subangular blocky- to granular structure;					
Bt1 5-16 Red (10YR 5/8) CLAY LOAM; medium subangular blocky; ~5% olive yello 6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med pores; abundant subangular blocky; olive yello saprolitic greenstone gravels, white quartz gravels, and grey friable weal A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; micaceous Strong brown (7.5YR/4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR 4/6) CLAY W/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 14 22 12 Ksat 14 22 12 10 10 10 Ksat 15 32 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>abundant fine roots; abundant fine and medium pores; trace subangular gravels;</th></td<>						abundant fine roots; abundant fine and medium pores; trace subangular gravels;					
6/6) weathered greenstone and white quartz gravels present; loose; frial abundant fine-med pores; abundant blocky structure; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weal A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 Red (2.5YR 4/6) CLAY LOAM; micaceous SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Test Depth, in. Rate, cm/d Ksat 14 22 12 Ksat 14 22 12 Ksat 15 32 110 <th></th> <th colspan="4"></th> <th></th>											
abundant fine-med roots; abundant fine-med pores; abrupt smooth bou2Bt216-32Red (10YR 5/8) CLAY; medium subangular blocky structure; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary.2Bt332-62Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yel saprolitic greenstone gravels, white quartz gravels, and grey friable weatASB 10-2/10/2022Ap0-10Reddish brown (5YR 4/4) LOAMBoringBt110-36Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt236-62Red (2.5YR 4/8) SILTY CLAY LOAM; micaceousSB 19A-4/18/2024Ap0-10Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring1Bt110-302Bt230-40Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt230-40Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at baseASat. Hydraulic Conductivity Test Results (b) TestDepth, in.Rate, cm/dKsat 63084Ksat 142212Ksat 1532110				Bt1	5-16						
2Bt216-32Red (10YR 5/8) CLAY; medium subangular blocky structure; friable; fine common; fine-med pores common; ~5-10% weathered gravels present smooth boundary.2Bt332-62Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yel saprolitic greenstone gravels, white quartz gravels, and grey friable weatASB 10-2/10/2022Ap0-10Reddish brown (5YR 4/4) LOAMBoringBt110-36Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt236-62SB 19A-4/18/2024Ap0-10Strong brown (7.5YR 4/6) LOAM; granular structure; abundant roots boring1Bt110-30Yellowish red (5YR 4/6) CLAY LOAM; micaceousASat. Hydraulic Conductivity Test Results (b)TestDepth, in.Rate, cm/dKsat 63084Ksat 142212Ksat 1532110											
common; fine-med pores common; ~5-10% weathered gravels present smooth boundary.2Bt332-62Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weatASB 10- Boring2/10/2022Ap0-10Reddish brown (5YR 4/4) LOAMBoringBt110-36Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt236-62Red (2.5YR 4/8) SILTY CLAY LOAM; micaceousSB 19A-4/18/2024Ap0-10Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring1Bt110-30Stell2Bt230-40Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt230-40Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at baseASat. Hydraulic Conductivity Test Results (b) TestDepth, in.Rate, cm/dKsat 63084 Ksat 142212 Ksat 1532Ksat 153211010											
smooth boundary. 2Bt3 32-62 Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yell saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quartz gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, white quarts gravels, and grey friable weat saprolitic greenstone gravels, subrounded gravels common gravels, subrounded gravels, subrounded gravels, saprolitic greenstone gravel, gravel, gravel, gravel, gre		2Bt2 16-32									
2Bt332-62Red (10YR 4/8) CLAY; friable; weak medium subangular blocky; olive yel saprolitic greenstone gravels, white quartz gravels, and grey friable weatASB 10-2/10/2022Ap0-10Reddish brown (5YR 4/4) LOAMBoringBt110-36Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt236-62SB 19A- boring4/18/2024Ap0-10Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots bringBt110-30Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt22Bt230-40Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at baseASat. Hydraulic Conductivity Test Results (b) TestDepth, in.Rate, cm/dKsat 63084 Ksat 14Ksat 142212 Ksat 1532Ksat 1532110											
A SB 10- 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; micaceous SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 14 22 12 Ksat 15 32 110						•					
A SB 10- Boring 2/10/2022 Ap 0-10 Reddish brown (5YR 4/4) LOAM Boring Bt1 10-36 Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Bt2 36-62 SB 19A- boring 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 2Bt2 30-40 Yellowish red (5YR 4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 14 22 12 Ksat 15 32 110				2Bt3	32-62						
BoringBt110-36Red (2.5YR 4/6) CLAY LOAM; micaceous; subrounded gravels common Red (2.5YR 4/8) SILTY CLAY LOAM; micaceousSB 19A-4/18/2024Ap0-10Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boringboring1Bt110-30Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt22Bt230-40Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at baseASat. Hydraulic Conductivity Test Results (b) TestRate, cm/dKsat 63084 Ksat 14Ksat 142212 Ksat 1532110											
Bt2 36-62 Red (2.5YR 4/8) SILTY CLAY LOAM; micaceous SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY W/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 14 22 12 Ksat 15 32 110			2/10/2022	Ар	0-10	Reddish brown (5YR 4/4) LOAM					
SB 19A- 4/18/2024 Ap 0-10 Strong brown (7.5YR/4/6) LOAM; granular structure; abundant roots boring boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 14 22 12 Ksat 15 32 110		Boring		Bt1	10-36						
boring 1Bt1 10-30 Yellowish red (5YR 4/6) CLAY LOAM w/ coarse sands; loose and friable 2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 9 32 34 Ksat 14 22 12 Ksat 15 32 110				Bt2							
2Bt2 30-40 Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base A Sat. Hydraulic Conductivity Test Results (b) Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 9 32 34 Ksat 14 22 12 Ksat 15 32 110			4/18/2024	-							
ASat. Hydraulic Conductivity Test Results (b)TestDepth, in.Rate, cm/dKsat 630Ksat 93234Ksat 1422Ksat 153210	I	boring									
Test Depth, in. Rate, cm/d Ksat 6 30 84 Ksat 9 32 34 Ksat 14 22 12 Ksat 15 32 110						Yellowish red (5YR/4/6) CLAY w/ 10YR lithochr. masses; gravelly at base of horizon					
Ksat 6 30 84 Ksat 9 32 34 Ksat 14 22 12 Ksat 15 32 110	A S	-		-	•						
Ksat 93234Ksat 142212Ksat 1532110			Depth, in.		cm/d						
Ksat 14 22 12 Ksat 15 32 110	I	Ksat 6	30	84							
Ksat 15 32 110	I	Ksat 9	32	34							
	I	Ksat 14	22	12							
Geometric Mean 44.1 11.02 = Geometric Mean divided by 4	I	Ksat 15	32	110							
		Geometric Mean 44.1 11.0		11.02	= Geometric Mean divided by 4						
Median 59.0 14.75 = Median divided by 4			Median	59.0	14.75	= Median divided by 4					
Ksat 1 58 30.5 Note: Performed in most restrictive horizon in Pit		Ksat 1	58	30.5	Note:	Performed in most restrictive horizon in Pit					
Ksat 2 53 36 Note: Performed in most restrictive horizon in Pit	ļ	Ksat 2	53	36	Note:	Performed in most restrictive horizon in Pit					
Geometric Mean 33.1		Geor	netric Mean	33.1							

APPENDIX E

				Depth,	
	Test No. (a)	Date	Horizon	in.	Description
Dra	infield (Cell)	B - Center	Section of	f Lower /	Area
В	SPD 6	06-Feb-24	Ар	0-4	Reddish brown (5YR 4/4) CLAY LOAM; granular structure; abundant fine and
					medium roots; abundant fine and medium pores.
			Bt1	4-17	Red (2.5YR 4/6) CLAY; medium subangular blocky; olive yellow (2.5Y 6/6)
					weathered greenstone gravels; loose consistency: 10-20% weathered gravel
					content; friable; common fine and medium roots; common fine-med pores;
					micaceous; abrupt wavy boundary.
			2Bt	17-32	Red (2.5YR 4/8) CLAY; medium subangular blocky; slightly loose; fine and medium
					roots common above 42"; fine-medium pores present; micaceous; clay films.
			3Bt	32-42	
			021		friable; no roots present; micaceous.
В	SPD 7	13-Oct-23	Ap	0-5	Reddish brown (5YR 4/4) LOAM; trace coarse quartz sands and small gravels
					present; fine subangular blocky- to granular structure; abundant fine roots;
					abundant fine and medium pores; abrupt smooth boundary.
			Bt1	5-22	Yellowish red (5YR 5/8) CLAY LOAM; medium subangular blocky; trace olive yellow
					(2.5Y 6/6) weathered greenstone gravels up to 2" diameter present; friable;
					common fine roots; abundant fine-med pores; abrupt smooth boundary.
			2Bt2	22-32	
					present; fine-med pores common; 20% grey weathered gravels with few cobbles;
					abrupt smooth boundary.
			2Bt3	32-64	
					friable; fine-med pores common; 20-30% grey weathered gravels with few
В	SPD 8	06-Feb-24	Ap	0-4	Reddish brown (2.5YR 4/6) CLAY; coarse quartz sands; granular structure; friable;
			•		abundant fine and medium roots; abundant fine and medium pores; trace mica;
					smooth boundary.
			Bt1	4-17	Reddish brown (2.5YR 4/6) CLAY; coarse quartz sands; strong medium subangular
					blocky; loose; common fine to medium roots; common fine-medium pores;
					smooth boundary.
			Bt2	17-38	Red (2.5YR 4/6) CLAY; medium subangular blocky; slightly hard; medium roots
					common; fine-medium pores common between peds; trace mica; no redox; clay
					films; abrupt wavy boundary.
			2BC	32-44	Dark red (2.5YR 3/6) CLAY LOAM; weak medium subangular blocky; slightly hard;
					friable; trace roots; few pores; no redox.
В	SPD 9	15-Mar-22	Ар	0-4"	Reddish brown (5YR/4/4) SILTY CLAY LOAM; Granular structure; Abundant roots
			Bt1	4-28"	Dark red brown (5YR/3/4) CLAY LOAM; Friable; Medium subangular blocky
					structure; Abundant fine to medium roots
			Bt2	28-44"	Yellowish red (5YR/4/6) CLAY LOAM; Trace subrounded gravels; Medium
					subangular blocky structure; Fine roots common
			2BC	44-62"	Mottled CLAY LOAM; 5-10% subrounded gravels; 15% red (2.5YR/4/6) iron
					accumulations; Reddish brown (5YR/5/4) iron depletions; Dark reddish brown
					(5YR/3/3) oxide staining; Restrictive layer

Table E-1. Drainfield Soil Evaluation Summary Т

Aqua Nova Engineering, PLC

				Depth,							
	Test No. (a) Date	Horizon	in.	Description						
Dra	infield Cell	B -continued	ł		<u>.</u>						
в	SPD 10	13-Oct-23	Ар	0-6	Strong brown (7.5YR 4/6) LOAM; friable; granular structure; abundant fine roots;						
			•		abundant fine and medium pore spaces; micaceous; abrupt smooth boundary.						
			1Bt	6-30	Yellowish red (5YR 4/6) CLAY LOAM; medium subangular blocky; slightly loose;						
					friable; abundant fine-med roots; abundant fine-med pores; micaceous; abrupt						
					smooth boundary.						
			2BC1	30-48	Yellowish red (5YR 4/6) CLAY LOAM; weak medium subangular blocky; friable and						
					slightly hard; grey and dark red saprolitic gravels present; common fine-med roots;						
					abundant pores; abrupt smooth boundary.						
			2BC2	48-72	Yellowish red (5YR 4/6) CLAY LOAM; fine- to medium subangular blocky; friable						
					and slightly hard; reddish brown (5YR 4/3) lithochromic masses (highly saprolitic						
					subangular gravels) present; fine-med pores present; trace fine roots; micaceous.						
В	SPD 12	13-Oct-23	Ар	0-6	Reddish brown (5YR 4/3) fine SANDY LOAM; friable; fine- to med subangular						
					blocky; abundant fine roots; fine and medium pore spaces common; trace quartz						
					gravels; abrupt smooth boundary.						
	1Bt 6-36				Dark brown (7.5YR 3/4) LOAM; medium subangular blocky structure; loose;						
					friable; trace olive yellow weathered greenstone gravels; common fine-med roots;						
					common fine-med and large pores; abrupt smooth boundary.						
			2B	36-64							
					friable; loose; red clay films; abundant fine roots; abundant fine-med pores; 20-						
					30% weathered gravels.						
В	SB 12-	2/10/2022	Ар	0-7	Reddish brown (2.5YR 5/4) SILT LOAM						
	boring		Bt1	7-34	Red (2.5YR 4/6) SILTY CLAY LOAM						
			Bt2	34-46	Yellowish red (5YR 5/8) SILTY CLAY LOAM; faint redox						
	Sat.										
	Hydraulic										
	Test	Depth, in.	Rate,	cm/d							
	Ksat 5	32	120								
	Ksat 7	24	60.0								
	Ksat 12	30	5.0								
	Ksat 19	24	11.2								
	Ksat 20	30	21.1								
	G	eometric Mean	24.3	6.1	= Mean divided by 4						
	-	Median	21.1		= Median divided by 4						
	Ksat 10	45	10.0								
-											

				Depth,	
	Test No. (a)	Date	Horizon	in.	Description
Drai	nfield (Cell)	C - South S	ection of	Lower A	rea
С	SPD 11	15-Mar-22	Ар	0-4"	Reddish brown (5YR/4/4) CLAY LOAM; Granular to medium subangular blocky
					structure; Abundant fine roots
			Bt1	4-22"	Yellowish red (5YR/4/6) CLAY LOAM; Medium subangular blocky structure;
					Abundant roots
			Bt2	22-62"	Red (2.5Y/4/6) CLAY LOAM; micaceous; Few subangular greenstone and quartz
					gravels; Medium subangular blocky structure; Abundant subangular coarse sands;
					Clay films present on faces of soil pedons; Fine and medium roots commmon
			2BC	62-80"	Mottled SANDY CLAY LOAM to SANDY CLAY; Weathered gravels present; Fine
					subangular blocky structure
С	SPD 12	13-Oct-23	Ар	0-6	Reddish brown (5YR 4/3) fine SANDY LOAM; friable; fine- to med subangular
					blocky; abundant fine roots; fine and medium pore spaces common; trace quartz
					gravels; abrupt smooth boundary.
			1Bt	6-36	Dark brown (7.5YR 3/4) LOAM; medium subangular blocky structure; loose;
					friable; trace olive yellow weathered greenstone gravels; common fine-med roots;
					common fine-med and large pores; abrupt smooth boundary.
			2B	36-64	Yellowish red (5YR 5/8) SANDY LOAM; medium subangular blocky structure;
					friable; loose; red clay films; abundant fine roots; abundant fine-med pores; 20-
					30% weathered gravels.
С	SPD 13	06-Feb-24	Ар	0-4	Brown (7.5YR 4/4) LOAM; granular structure; Soft consistency; abundant fine and
					medium roots; abundant fine and medium pore spaces; abrupt smooth boundary.
			Bt1	4-19	Yellowish red (5YR 4/6) LOAM; few subangular weathered gravels; strong medium
					subangular blocky structure; common fine to medium roots; fine to medium pores
					present; abrupt wavy boundary.
			2Bt2	19-48	Yellowish red (5YR 4/6) CLAY; few olive yellow lithochromic masses; friable and
					slightly loose; medium subangular blocky; fine to medium roots common;
					abundant fine to medium pores; trace mica; clay films present.
С	SPD 14	06-Feb-24	Ар	0-4	Dark brown (7.5YR 3/3) CLAY LOAM; granular structure; abundant fine and
					medium roots; abundant fine and medium pores; abrupt wavy boundary.
			Bt1	4-20	Brown (7.5YR 4/4) CLAY LOAM; coarse quartz sands present; strong medium
					subangular blocky; loose consistency; friable; abundant fine and medium roots;
					common fine-med pores; diffuse smooth boundary.
			Bt2	20-35	Reddish brown (5YR 4/4) CLAY; coarse quartz sands present; strong medium
					subangular blocky; fine and medium roots common; clay films.
			Bt3	35-48	Reddish brown (2.5YR 4/4) CLAY; (7.5YR 5/4) depletions; (2.5YR 4/6) trace halos;
					fine-medium pores common; fine to medium roots common; no depletions along
					root traces.

				Depth,	
	Test No. (a)	Date	Horizon	in.	Description
Drai	nfield Cell (continue	ł		
С	SPD 15	13-Oct-23	Ар	0-5	Reddish brown (5YR 4/3) fine SANDY LOAM; friable; fine- to med subangular
					blocky; abundant fine roots; fine and medium pore spaces common; trace quartz
					gravels; abrupt smooth boundary.
			Bt1	5-50	Dark brown (7.5YR 3/4) LOAM; medium subangular blocky structure; loose;
					friable; trace olive yellow weathered greenstone gravels; common fine-med roots;
					common fine-med and large pores; abrupt smooth boundary.
			2Bt2	50-66	Strong brown (7.5YR 5/6) CLAY LOAM; weak medium subangular blocky structure;
					friable; ~20% light brown (7.5YR 6/3) iron depletions and ~10% red (2.5YR 5/8)
					concentrations; no roots observed; fine-med pores present.
С	SPD 16	13-Oct-23	Ар	0-5	Strong brown (7.5YR 4/6) LOAM; friable and loose; granular structure; abundant
					fine roots; abundant fine and medium pores; micaceous; abrupt smooth
					boundary.
			Bt1	5-28	Yellowish red (5YR 4/6) CLAY LOAM; reddish brown (5YR 4/3) lithochromic
					masses; friable and slightly loose; medium subangular blocky structure; common
					fine roots; abundant fine and medium pore spaces; abrupt smooth boundary.
			Bt2	28-38	Red (2.5YR 4/8) CLAY LOAM; friable (dry); slightly sticky when wetted; medium
					subangular blocky structure; common fine roots; common fine and medium pore
					spaces; coarse subrounded quartz sands observed; micaceous; abrupt smooth
					boundary.
			2C	38-66	Yellowish red (5YR 5/8) soft gneissic saprolite; crushes to SANDY LOAM; friable
					and slightly loose; weak medium subangular blocky structure; olive yellow and
					grey lithochroimic features observed; red clay films; fine roots present; fine-med
					pores present; micaceous.
С	Sat. Hydrau				
		Depth, in.	Rate,	cm/d	
	Ksat 8	30			
	Ksat 13	32	-		
	Ksat 17	28			
	Ksat 18	30			GN Value
	Geor	netric Mean			= Geometric Mean divided by 4
	Ka at C	Median	39.1	9.8	= Median divided by 4
<u> </u>	Ksat 3	58	2.5		

				Depth,	
	Test No. (a)	Date	Horizon	in.	Description
Drai	nfied (Cell) D	- Area Uphil	l of Well ar	nd Cell A	
D	SPD 21	13-Mar-24	Ар	0-2	Red (2.5YR 3/4) CLAY LOAM; granular structure; loose; abundant fine and medium roots; abundant fine and medium pore spaces; clear smooth boundary.
			Bt1	2-12	Reddish brown (2.5YR 4/4) CLAY LOAM; few grey subrounded gravels present; strong medium subangular blocky structure; loose and friable consistency; roots and pores common; clear smooth boundary.
			2Bt2	12-37	Yellowish red (5YR 4/6) CLAY; trace black oxide staining; medium subangular blocky structure; slightly loose; roots and pores common; mica present; clay films present.
			3Bt3	37-72	Yellowish red (5YR 4/6) CLAY; common coarse sands; platy structure; hard; no roots present; trace pores; clay films present.
D	SPD 22	13-Mar-24	Ар	0-5	Reddish brown (5YR 4/4) LOAM; granular structure; loose consistency; roots and pores present; clear smooth boundary.
			Bt1	5-20	Reddish brown (5YR 4/4) CLAY LOAM; coarse sands present; trace black biochar; medium subangular blocky structure; loose and friable; roots and pores common; very good structure; diffuse smooth boundary.
			2Bt2	20-32	Red (2.5YR 4/6) CLAY; coarse quartz sands present; medium subangular blocky structure; slightly loose and friable; common roots; abundant pores; micaceous; diffuse smooth boundary.
			2Bt3	32-54	Red (2.5YR 4/6) CLAY; coarse quartz sands present; weak medium subangular blocky structure; slightly hard; roots and pores present; micaceous; clay films present; diffuse smooth boundary.
			Bt4	54-72	Red (2.5YR 4/6) CLAY; platy structure; hard; no roots present; few pores present; micaceous; clay films present.
D	SPD 23	13-Mar-24	Ар	0-4	Dark reddish brown (2.5YR 3/4) LOAM; granular structure; abundant roots.
			Bt1	4-32	Yellowish red (5YR 4/6) CLAY LOAM; grey coarse quartz sands present; medium subangular blocky structure; loose, slightly sticky; roots common; fine, medium, and large pores common; trace percentage of rock content; trace amounts of mica; diffuse wavy boundary.
			Bt2	32-50	Red (2.5YR 4/6) CLAY; approximately 5% is mixed subrounded gravels; medium subangular blocky structure; loose, slightly sticky; roots and pores common; trace amounts of mica; diffuse wavy boundary.
			2Bt3	50-72	Red (2.5YR 4/6) CLAY; white micas common; mixed subrounded gravels present; platy structure; hard, sticky; pores present; approximately 10% gravel composition; common mica flakes.
D	SPD 24	13-Mar-24	Ар	0-2	Reddish brown (5YR 4/4) LOAM; granular structure; loose; roots and pores present; clear smooth boundary.
			Bt1	2-10	Yellowish red (5YR 4/6) CLAY LOAM; medium subangular blocky structure; loose, friable; roots and pores abundant; trace rock percentage; diffuse smooth boundary.
			Bt2	10-50	Yellowish red (5YR 4/6) CLAY; subangular coarse sands present; medium subangular blocky structure; loose; roots and pores common; trace rock percentage; trace mica grains; moist; clear smooth boundary.
			2Bt3	50-72	Red (2.5YR 4/6) CLAY; platy structure; hard, friable; trace pores; trace mica grains.

Table E-1. Drainfield Soil Evaluation Summary

Aqua Nova Engineering, PLC

				Depth,					
	Test No. (a)	Date	Horizon	in.	Description				
Drai	nfied Cell D -	continued							
D	SPD 25	13-Mar-24	Ар	0-4	Reddish brown (5YR 4/4) LOAM; granular structure; loose; roots and pores				
					present; clear smooth boundary.				
			Bt1	4-22	Yellowish red (5YR 4/6) CLAY; medium subangular blocky structure; loose; roots				
					and pores present; trace rock percentage; trace mica grains; clear smooth				
					boundary.				
			Bt2	22-60	Yellowish red (5YR 4/6) CLAY; red clay films present; medium subangular blocky				
					structure; very loose; roots and pores present; trace rock percentage; moist.				
D	SPD 26	SPD 26 13-Mar-24 Ap 0-3		0-3	Reddish brown (5YR 4/4) LOAM; granular structure; loose; roots and pores				
					present; clear smooth boundary.				
	1Bt1 3-17		3-17	Yellowish red (5YR 4/6) CLAY; Medium subangular blocky structure; loose, friable					
					abundant roots; pores present; trace rock percentage; clear smooth boundary.				
			2Bt2	17-58	Yellowish red (5YR 4/6) CLAY; few olive yellow lithochromic masses; medium				
					subangular blocky structure; loose, friable; abundant roots; pores common; trace				
					rock percentage; clay films present; moist; clear smooth boundary.				
			3Bt3	58-68	Yellowish red (5YR 4/6) CLAY; micaceous; weak medium subangular blocky				
					structure; slightly hard; no roots present.				
D	Sat. Hydrau	lic Conducti	vity (b)						
	Test	Depth, in.	Rate, o	cm/d					
	Ksat 22	30	114.8						
	Ksat 23	30	27.20						
	Geor	netric Mean	55.9	14.0	= Geometric mean divided by 4				
		Median	71.0	17.8	= Median divided by 10				
	Ksat 11	44	76.0						

(a) Test Pit (pit), soil boring (SB) or Saturated Hydaulic Contductivity Test (Ksat)

(b) Saturated hydaulic contductivity test stabilized rate. Full test data is presented in Appendix E.

Application Package Page 56 of 74

Consta	nt-Head Borel	nole Permeameter	Test	An	alytical Method:	Glover Solu	ition	File Name: (GloverRE_Temp	late	
Project Name:	Innisfree Village		Boring No:	Ksat 1		Terminology and Solution (R. E. Glover Solution) [*]					
Project No	23-818		Investigators:	AS, EB		Ksat _B : (Coeffi	cient of Permea	ibility) @ Base Tr	np. T _B (°C)	20	
Project Location:	Crozet, VA		Date:	10/13/2023		Q: Rate of flo	w of water fron	n the borehole			
Boring Depth:	45.72	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm	H: Constant h	neight of water i	in the borehole			
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	11.0	cm	r: Radius of t	he cylindrical bo	orehole			
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	21.0	cm	V: Dyn. Visc.	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ $\rm T_{\rm B}$		
Soil/Water Tmp. T:	20	°C	H/r ^{**} :	5.1		Ksat = Q[sinh	⁻¹ (H/r) - (r ² /H ² +2	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]	
Dyn. Visc. @ T:	0.001003		Dyn. Visc. @ T _B .:	0.001003	kg/m·s	Ksat _B = QV[sir	h ⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH	²) [Tmp. Correc	tion]	
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q		-	3 Equivalent Valu			
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
	2	40.40.00									
320		13:42:00									
320				16.00	0.00		0.00E+00	0.0	0.00	0.	
274				0.50	920.00		8.34E-03	720.5	11.82	23.	
231				0.50	860.00		7.80E-03	673.5	11.05	22	
190				0.50	820.00		7.43E-03	642.2	10.53	21	
155				0.50	700.00		6.34E-03	548.2	8.99	17	
120				0.50	700.00		6.34E-03	548.2	8.99	17.	
90	-			0.50	600.00		5.44E-03	469.9	7.71	15	
60				0.50	600.00		5.44E-03	469.9	7.71	15.	
35				0.50	500.00		4.53E-03	391.6	6.42	12	
13	220	14:02:30	0:00:30	0.50	440.00	39.9	3.99E-03	344.6	5.65	11.	
2.22		14.04.00									
3,20		14:04:00		0.50	800.00	70 5		C2C F	10.20		
2,80				0.50	800.00		7.25E-03	626.5	10.28	20. 19.	
2,42				0.50 0.50	760.00 480.00		6.89E-03 4.35E-03	595.2 375.9	9.76 6.17	19.	
1,76				0.50	840.00		4.33L-03	657.8	10.79	21	
1,76				0.50	600.00		5.44E-03	469.9	7.71	15	
1,40				0.50	520.00		4.71E-03	405.5	6.68	13	
96				0.50	480.00		4.35E-03	375.9	6.17	13	
76				0.50	400.00		3.63E-03	313.3	5.14	10	
36				0.50	800.00		7.25E-03	626.5	10.28	20	
Natural Moisture:	100	Consistency			Enter Ksat Value:		50	250.6			
JSDA Txt./USCS Class:		Water Table Depth:					at Value is determ	ined by averaging	and/or rounding	the test resu	
Struct./% Pass. #200.: Glover, R. E. 1953. Flow from		Init. Saturation Time.:				Flansed Time (Granh	ed values and anal			

Application Package Page 57 of 74

Consta	nt-Head Borel	nole Permeameter	Test	Ana	alytical Method:	Glover Solu	tion	File Name: G	iloverRE_Temp	olate
Project Name:	Innisfree Villiage		Boring No:	Ksat 2		Т	erminology and	Solution (R. E.	Glover Solutio	n) [*]
Project No	23-818		Investigators:	AS, EB		Ksat _B : (Coeffi	cient of Permea	bility) @ Base Tn	пр. Т _в (°С)	20
Project Location:	Crozet, VA		Date:	10/13/2023		Q: Rate of flo	w of water fron	n the borehole		
Boring Depth:	134.62	(m, cm, ft, in)	WCU Base Ht. h:	10.0	cm	H: Constant h	eight of water i	n the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	11.0	cm	r: Radius of t	he cylindrical bo	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	21.0	cm	V: Dyn. Visc. (of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T _B	
Soil/Water Tmp. T:	20	°C	H/r ^{**} :	5.1		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +2	L) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001003	kg/m·s	Dyn. Visc. @ T _B .:	0.001003	kg/m·s			+1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			Equivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
4400		14:10:00								
3250				21.00	54.76	5.0	4.96E-04	42.9	0.70	1.4
3020				5.00	46.00	4.2	4.17E-04	36.0	0.59	1.1
2760				5.00	52.00	4.7	4.71E-04	40.7	0.67	1.3
2500				5.00	52.00	4.7	4.71E-04	40.7	0.67	1.3
2260				5.00	48.00	4.4	4.35E-04	37.6	0.62	1.2
1990				5.00	54.00	4.9	4.89E-04	42.3	0.69	1.3
1730				5.00	52.00	4.7	4.71E-04	40.7	0.67	1.3
1450	280	15:06:00	0:05:00	5.00	56.00	5.1	5.08E-04	43.9	0.72	1.4
1170	280	15:11:00	0:05:00	5.00	56.00	5.1	5.08E-04	43.9	0.72	1.4
910	260	15:16:00	0:05:00	5.00	52.00	4.7	4.71E-04	40.7	0.67	1.3
620	290	15:21:00	0:05:00	5.00	58.00	5.3	5.26E-04	45.4	0.75	1.4
360	260	15:26:00	0:05:00	5.00	52.00	4.7	4.71E-04	40.7	0.67	1.3
3,250		15:29:00								
3,150				2.00	50.00	4.5	4.53E-04	39.2	0.64	1.2
3,050				2.00	50.00	4.5	4.53E-04	39.2	0.64	1.2
2,950		15:35:00	0:02:00	2.00	50.00	4.5	4.53E-04	39.2	0.64	1.2
2,850	100	15:37:00	0:02:00	2.00	50.00	4.5	4.53E-04	39.2	0.64	1.2
Natural Moisture:		Consistency:			Enter Ksat Value:			36.0	0.668	
USDA Txt./USCS Class:								ined by averaging a		
Struct./% Pass. #200.:		Init. Saturation Time.: bove groundwater level. pp.				Flansed Time G	ranh	ed values and anal		-

Application Package Page 58 of 74

								oplication Pa	chage I age	<u> </u>
Constai	nt-Head Boreh	nole Permeameter	Test	Ana	alytical Method:	Glover Solu	ition	File Name: (GloverRE_Tem	plate
Project Name:	Innisfree		Boring No:	Ksat 5		т	erminology and	d Solution (R. E.	Glover Solutio	n) [*]
Project No			Investigators:	ECP		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tr	np. T _B (°C)	22
Project Location:	Crozet, VA		Date:	2-22-2024		Q: Rate of flo	w of water from	n the borehole		
Boring Depth:	81.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T_B	
Soil/Water Tmp. T:	8	°C	H/r **	6.1		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +:	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001386	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sin		² +1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			_в Equivalent Valu	ies	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		13:40:00		1						
1160	,	13:50:00	0:10:00	10.00	204.00	20.6	2.06E-03	177.7	2.92	5
800				2.00	180.00	18.2	1.82E-03	156.8	2.57	5
440	360	13:56:00	0:04:00	4.00	90.00	9.1	9.08E-04	78.4	1.29	2
80	360	13:58:00	0:02:00	2.00	180.00	18.2	1.82E-03	156.8	2.57	Į,
2820		13:58:00								
2450	370	14:00:00	0:02:00	2.00	185.00	18.7	1.87E-03	161.2	2.64	!
2110	340	14:02:00	0:02:00	2.00	170.00	17.1	1.71E-03	148.1	2.43	4
1770	340	14:04:00	0:02:00	2.00	170.00	17.1	1.71E-03	148.1	2.43	
1,430	340	14:06:00	0:02:00	2.00	170.00	17.1	1.71E-03	148.1	2.43	4
1,100	330	14:08:00	0:02:00	2.00	165.00	16.6	1.66E-03	143.8	2.36	
800	300	14:10:00	0:02:00	2.00	150.00	15.1	1.51E-03	130.7	2.14	
440	360	14:12:00	0:02:00	2.00	180.00	18.2	1.82E-03	156.8	2.57	
80	360	14:14:00	0:02:00	2.00	180.00	18.2	1.82E-03	156.8	2.57	Į.
3,010		14:32:00								
2,680	330	14:34:00	0:02:00	2.00	165.00	16.6	1.66E-03	143.8	2.36	2
2,380	300	14:36:00	0:02:00	2.00	150.00	15.1	1.51E-03	130.7	2.14	
2,060	320	14:38:00	0:02:00	2.00	160.00	16.1	1.61E-03	139.4	2.29	
1,720	340	14:40:00	0:02:00	2.00	170.00	17.1	1.71E-03	148.1	2.43	
1,030	690	14:45:00	0:05:00	5.00	138.00	13.9	1.39E-03	120.2	1.97	3
300	730	14:50:00	0:05:00	5.00	146.00	14.7	1.47E-03	127.2	2.09	2
Natural Moisture:		Consistency:			Enter Ksat Value:			120 cm/day		
JSDA Txt./USCS Class:		Water Table Depth:						ined by averaging a	. 0	
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thr		zed values and anal	yzing the Flow R	ate Q vs Tota

Application Package Page 59 of 74

								oplication Pac		
Constar	nt-Head Borel	nole Permeameter	lest	An	alytical Method:	1		File Name:		
Project Name:	Innisfree		Boring No:	Ksat 6				d Solution (R. E.		n)*
Project No			Investigators:	APS				ability) @ Base Tn	пр. Т _в (⁰С)	22
Project Location:	Crozet, VA		Date	3-13-2024		Q: Rate of flow	v of water fror	n the borehole		
Boring Depth:	81.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant he	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	-			
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	-		p. T °C/Dyn. Visc.	5	
Soil/Water Tmp. T:	17	°C	H/r ^{**} :	6.1		Ksat = Q[sinh ⁻¹	(H/r) - (r ² /H ² +	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001081	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sinl		² +1) ^{.5} + r/H]/(2πH		tion]
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			_B Equivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3000		9:55:00								
1730					127.00	10.0	9.99E-04	86.3	1.42	2.8
1090		10:10	0:05:00	5.00	128.00	10.1	1.01E-03	87.0	1.43	2.8
430	660	10:15:00	0:05:00	5.00	132.00	10.4	1.04E-03	89.7	1.47	2.
3200		10:16:00								
2580	620	10:21:00	0:05:00	5.00	124.00	9.8	9.75E-04	84.3	1.38	2.
1410	1,170	10:26:00	0:05:00	5.00	234.00	18.4	1.84E-03	159.0	2.61	5.
1000	410	10:31:00	0:05:00	5.00	82.00	6.4	6.45E-04	55.7	0.91	1.
20	980	10:36:00	0:05:00	5.00	196.00	15.4	1.54E-03	133.2	2.18	4.:
3,200		10:48:00								
2,700				2.00	250.00	19.7	1.97E-03	169.9	2.79	5.
2,140				2.00	280.00		2.20E-03	190.3	3.12	6.
1,580				2.00	280.00		2.20E-03	190.3	3.12	6.
1,000					290.00		2.28E-03	197.1	3.23	6.
420				2.00	290.00	22.8	2.28E-03	197.1	3.23	6.
3,200		11:00:00								
2,620				2.00	290.00	22.8	2.28E-03	197.1	3.23	6.
2,040					290.00		2.28E-03	197.1	3.23	6.
Natural Moisture:		Consistency			Enter Ksat Value:			84 cm/day		
USDA Txt./USCS Class:		Water Table Depth:						nined by averaging a	-	
Struct./% Pass. #200.:	a test-hole located a	Init. Saturation Time.: bove groundwater level. pp.	60.71 in: Theory and Pr	phome of Wata	r Dorcolation (C. N. Zan	Elansed Time G	anh	zed values and analy	, Ç	

Application Package Page 60 of 74

									e 60 of 74
t-Head Boreh	ole Permeameter	Test	Ana	alytical Method:	Glover Solu	tion	File Name: O	iloverRE_Temp	olate
nnisfree		Boring No:	Ksat 7		Т	erminology and	d Solution (R. E.	Glover Solutio	n)*
		Investigators:	APS		Ksat _B : (Coeffic	ient of Permea	bility) @ Base Tm	np. T _B (°C)	22
Crozet, VA		Date:	3-13-2024		Q: Rate of flow	w of water fron	n the borehole		
61	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	n the borehole		
8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	ne cylindrical bo	orehole		
4.13	cm	Const. Wtr. Ht. H:	25.2	cm	-				
17	°C	H/r ^{**}	6.1						
		Dyn. Visc. @ T _B .:		-					:tion]
						1			·
(ml)			(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
							-		
									2.
1,070	13:13	0:10:00	10.00	107.00	8.4	8.42E-04	72.7	1.19	2.
	13:14:00								
710	13:19:00	0:05:00	5.00	142.00	11.2	1.12E-03	96.5	1.58	3.
430	13:24:00	0:05:00	5.00	86.00	6.8	6.76E-04	58.4	0.96	1.
520	13:29:00	0:05:00	5.00	104.00	8.2	8.18E-04	70.7	1.16	2.
500	13:34:00	0:05:00	5.00	100.00	7.9	7.86E-04	67.9	1.11	2.
500	13:39:00	0:05:00	5.00	100.00	7.9	7.86E-04	67.9	1.11	2.
500	13:44:00	0:05:00	5.00	100.00	7.9	7.86E-04	67.9	1.11	2.
	13:45:00								
510	13:50:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2.
510	13:55:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2.
510	14:00:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2
510	14:05:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2
510	14:10:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2.
510	14:15:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2
	14:16:00								
510	14:21:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2
510	14:26:00	0:05:00	5.00	102.00	8.0	8.02E-04	69.3	1.14	2.
	Consistency:			Enter Ksat Value:			60 cm/day		
	Water Table Depth:						,		
	Init. Saturation Time.: bove groundwater level. pp.				Elansed Time G	ranh		/zing the Flow Ra	-
	nnisfree Crozet, VA 61 8.3 4.13 17 0.001081 Volume Out (ml) 1,150 1,070 1,070 1,070 1,070 1,070 500 500 500 500 500 500 500 500 500	Innisfree Crozet, VA 61 (m, cm, ft, in) 8.3 cm 4.13 cm 0.001081 kg/m·s Volume Out (ml) TIME (h:mm:ss A/P) 1,150 13:03:00 1,150 13:03:00 1,070 13:13 0 13:14:00 710 13:14:00 710 13:14:00 710 13:14:00 520 13:29:00 530 13:39:00 540 13:41:00 550 13:39:00 550 13:39:00 550 13:39:00 550 13:41:00 550 13:350:00 510 14:00:00 510 14:00:00 510 14:00:00 510 14:15:00 510 14:16:00 510 14:21:00 510 14:21:00 510 14:26:00 510 14:26:00	Boring No: Investigators: Crozet, VA Date 61 (m, cm, ft, in) WCU Base Ht. h: 8.3 cm WCU Susp. Ht. S: 4.13 cm Const. Wtr. Ht. H: 17 °C H/r *	Boring No	nnisfree Boring Noinvestigators	nnisfree Boring No Kat 7 T Investigators APS Ksat ₂ : (Coeffic APS Corset, VA Date 3-13-2024 Q: Rate of flow APS 61 (m, cm, ft, in) WCU Base Ht. h: 4.13 cm 10.0 cm r: Radius of th 4.13 cm Const. Wtr. Ht. H: 4.13 cm Const. Wtr. Ht. H: 25.2 cm Y: Dyn. Visc. Or (m'/m) Ksat = Q(sinf) 0.0001081 kg/m*s Dyn. Visc. @ T ₈ : 0.000955 kg/m*s Ksat = Q(sinf) 0.0001081 kg/ms Dyn. Visc. @ T ₈ : 0.000955 kg/m*s Ksat = Q(sinf) 0.0001081 kg/ms Dyn. Visc. @ T ₈ : 0.000955 kg/m*s Ksat = Q(sinf) 0.0001081 kg/ms Dyn. Visc. @ T ₈ : 0.000955 kg/m*s Ksat = Q(sinf) 0.0011070 13:13:0 0:10:00 10.00 115.00 P_0 1.070 13:14:00 0:0:0:00 5.00 140.00 11.2 430 13:2:4:00 0:0:0:00 5.00 100.00 7.9 500 13:3:9:0	Insistee Boring No: investigators: Kat 7 Terminology an APS investigators:: APS Sata; (Coefficient of Permea 3-13-2024 investigators:: 3-13-2024 Q: Rate of flow of water fron 4:13 cm 6.1 (m, cn, ft, in) WCU Base Ht. h: WCU Base Ht. h: Const. Wtr. Ht. H: 10.2 cm 15.0 cm H: Roins of the cylindrical bring the cylindrical bri	Innisfree Boring No: Investigators: izozet, VA Ksat 7 Terminology and Solution (R. E. I APS Ksat: (Coefficient of Permeability) @ Base Tr. 3-13-2024 6.1 (m, cm, ft, in) WCU Susp. Ht. S: (MCU Susp. Ht. S: 10.2 cm C: Rate of flow of water from the borehole 10.2 cm C: Rate of flow of water (how of water (how of water (how borehole 10.2 cm 4.13 cm Const: Wtr. Ht. H: 17 °C 10.2 cm C: Radius of the cylindrical borehole 10.2 cm C: Radius of the cylindrical borehole 10.2 cm 0.01081: kg/ms Vpn. Visc. @ Ts: 0.000955 kg/ms 0.000955 kg/ms Ksate -Q[sin ¹¹ (H/) - (r/H ⁺¹) ¹ + r/H)/(2rH ¹) 1.150 Timmiss A/P Interval Elapsed Time (h:mmiss A/P) Flow Rate Q (mi/mi/mi)	Instree Boring No: Kat 7 Terminology and Solution (R. E. Glover Solution (R. E. E. Glover Solution (R. E. E. Glover Solution (R. E. E. Glover Soluti

Application Package Page 61 of 74

							<u>A</u>	pplication Pa	<u>ckage rag</u>	
Constar	t-Head Bore	ole Permeameter	Test	An	alytical Method:	Glover Solu	ition	File Name:	GloverRE_Tem	plate
Project Name:	Innisfree		Boring No:	Ksat 8		Т	erminology an	d Solution (R. E.	Glover Solutio	n) [*]
Project No			Investigators:	APS		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tr	np. T _B (°C)	22
Project Location:	Crozet, VA		Date:	3-13-2024		Q: Rate of flo	w of water from	m the borehole		
Boring Depth:	76.2	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tm	p. T °C/Dyn. Visc.	of water @ T _B	
Soil/Water Tmp. T:	17	°C	H/r ^{**} :	6.1		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001081	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sin		² +1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			_B Equivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
2970		14:32:00						1		
2630	340			5.00	68.00		5.35E-04	46.2	0.76	1
2310	320			5.00	64.00	5.0	5.03E-04	43.5	0.71	1
1980	330	14:47:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	1
1650	330			5.00	66.00	5.2	5.19E-04	44.8	0.74	1
1330	320			5.00	64.00		5.03E-04		0.71	2
1000	330				66.00	5.2	5.19E-04	44.8	0.74	:
690	310				62.00		4.88E-04		0.69	1
360	330	15:12:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	1
3,200		15:18:00								
2,840	360	15:23:00	0:05:00	5.00	72.00	5.7	5.66E-04	48.9	0.80	1
2,500	340	15:28:00	0:05:00	5.00	68.00	5.3	5.35E-04	46.2	0.76	1
2,170	330	15:33:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	-
1,840	330	15:38:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	2
1,510	330	15:43:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	2
1,180	330	15:48:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	2
850	330	15:53:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	1
520	330	15:58:00	0:05:00	5.00	66.00	5.2	5.19E-04	44.8	0.74	1
Natural Moisture:		Consistency:			Enter Ksat Value:			42 cm/day		
USDA Txt./USCS Class:		Water Table Depth:						nined by averaging a	-	
Struct./% Pass. #200.: Glover, R. E. 1953. Flow from		Init. Saturation Time.:				Elansed Time G		zed values and anal	yzing the Flow R	ate Q vs Tota

Application Package Page 62 of 74

Consta	nt-Head Borel	hole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name: (GloverRE_Tem	plate			
Project Name:	Innisfree		Boring No	Ksat 9		Те	erminology and	d Solution (R. E.	Glover Solutio	n) [*]			
Project No			Investigators:	APS		Ksat _B : (Coeffic	ient of Permea	ibility) @ Base Tr	пр. Т _в (°С)	22			
Project Location:	Crozet, VA		Date:	3-13-2024		Q: Rate of flow	v of water fron	n the borehole					
Boring Depth:	81.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	water in the borehole					
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	ne cylindrical b	orehole					
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. c	f water @ Tmp	o. T °C/Dyn. Visc.	of water @ T _B				
Soil/Water Tmp. T:	17	°C	H/r ^{**}	6.1		Ksat = Q[sinh ^{-*}	^L (H/r) - (r ² /H ² +2	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]			
Dyn. Visc. @ T:	0.001081	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sinl	⁻¹ (H/r) - (r²/H²	+1) ^{.5} + r/H]/(2πH	²) [Tmp. Corre	ction]			
VOLUME	Volume Out	TIME	Interval Elapsed	d Time	Flow Rate Q			3 Equivalent Valu	es				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)			
3250		10:24:00											
3050			0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0.			
1450	1,600	11:04	0:35:00	35.00	45.71	3.6	3.60E-04	31.1	0.51	1.			
1230	220	11:14:00	0:10:00	10.00	22.00	1.7	1.73E-04	14.9	0.25	0			
1010	220	11:19:00	0:05:00	5.00	44.00	3.5	3.46E-04	29.9	0.49	0			
780	230	11:24:00	0:05:00	5.00	46.00	3.6	3.62E-04	31.3	0.51	1			
550	230	11:29:00	0:05:00	5.00	46.00	3.6	3.62E-04	31.3	0.51	1			
320	230	11:34:00	0:05:00	5.00	46.00	3.6	3.62E-04	31.3	0.51	1			
90	230	11:39:00	0:05:00	5.00	46.00	3.6	3.62E-04	31.3	0.51	1			
3,200)	11:34:00											
2,930	270	11:44:00	0:10:00	10.00	27.00	2.1	2.12E-04	18.3	0.30	0			
2,680	250	11:49:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
2,430	250	11:54:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
2,180	250	11:59:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
1,930	250	12:04:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
1,680	250	12:09:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
1,430	250	12:14:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
1,180		12:19:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
930		12:24:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
680	250			5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
430	250	12:34:00	0:05:00	5.00	50.00	3.9	3.93E-04	34.0	0.56	1			
180				5.00			3.93E-04	34.0	0.56	1			
Natural Moisture:		Consistency:			Enter Ksat Value:			34 cm/day					
JSDA Txt./USCS Class:		Water Table Depth:						ined by averaging a	and/or rounding	the test resu			
Struct./% Pass. #200.: Glover, R. E. 1953. Flow from						for the final thre		ed values and anal	yzing the Flow R	ate Q vs Tota			

Application Package Page 63 of 74

	APPENDIX E Application Package Page 63 of tant-Head Borehole Permeameter Test Analytical Method: Glover Solution File Name: GloverRE Template							e 63 01 74			
Constar	nt-Head Boreł	nole Permeameter	Test	An	alytical Method:	Glover Solu	ition	File Name:	GloverRE_Tem	plate	
Project Name:	Innisfree		Boring No:	Ksat 10		Т	erminology an	d Solution (R. E.	Glover Solutio	on) [*]	
Project No			Investigators:	APS		Ksat _B : (Coeffi	cient of Permea	ability) @ Base Tr	np. T _B (°C)	22	
Project Location:	Crozet, VA		Date:	3-13-2024		Q: Rate of flo	w of water fror	n the borehole			
Boring Depth:	114.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole			
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of the cylindrical borehole					
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T _r	3	
Soil/Water Tmp. T:	17	°C	H/r ^{**} :	6.1		Ksat = Q[sinh	$^{1}(H/r) - (r^{2}/H^{2} +)$	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]	
Dyn. Visc. @ T:	0.001081	-	Dyn. Visc. @ T _B .:	0.000955	Q .	-		² +1) ^{.5} + r/H]/(2πH	-		
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			_B Equivalent Valu			
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)	
3100		11:37:00						F			
2970	130				13.00		1.02E-04	8.8	0.14	0.2	
2780	190			10.00	19.00	1.5	1.49E-04	12.9	0.21	0.4	
2630	150			10.00	15.00	1.2	1.18E-04	10.2	0.17	0.	
2450	180			10.00	18.00	1.4	1.42E-04	12.2	0.20	0	
2300	150			10.00	15.00	1.2	1.18E-04	10.2	0.17	0.	
2160	140				14.00		1.10E-04	9.5	0.16	0.	
2000	160			10.00	16.00	1.3	1.26E-04	10.9	0.18	0.3	
1840	160				16.00		1.26E-04	10.9	0.18	0.3	
1680	160			10.00	16.00	1.3	1.26E-04	10.9	0.18	0.3	
1,520					16.00	1.3	1.26E-04	10.9	0.18	0.3	
1,360				10.00	16.00	1.3	1.26E-04	10.9	0.18	0.3	
1,200	160			10.00	16.00	1.3	1.26E-04	10.9	0.18	0.	
1,040	160	13:47:00	0:10:00	10.00	16.00	1.3	1.26E-04	10.9	0.18	0.3	
Natural Moisturo		Consistency			Enter Ksat Value:			10 cm/day			
	,					Notes: Test Ksa	t Value is determ	10 cm/day nined by averaging a	and/or rounding	the test result	
USDA Txt./USCS Class:		Water Table Depth:						zed values and anal	-		
Struct./% Pass. #200.:	#200.: Init. Saturation Time.: 3. Flow from a test-hole located above groundwater level. pp. 69-7l. in: Theory and Pro					Flansed Time G	ranh				

Application Package Page 64 of 74

Consta	nt-Head Borel	hole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name: 0	GloverRE_Temp	olate
Project Name:	Innisfree		Boring No:	Ksat 11				d Solution (R. E.		n) [*]
Project No			Investigators:	APS		Ksat _B : (Coeffic	ient of Permea	ability) @ Base Tn	np. T _B (°C)	22
Project Location:	Crozet, VA		Date:	3-13-2024		Q: Rate of flow	v of water fror	n the borehole		
Boring Depth:	111.6	i (m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant he	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	ne cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	f water @ Tm	p. T °C/Dyn. Visc.	of water @ T_B	
Soil/Water Tmp. T:	17	′ °С	H/r ^{**}	6.1		Ksat = Q[sinh ⁻¹	^L (H/r) - (r ² /H ² +	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001081	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sinł	⁻¹ (H/r) - (r²/H²	² +1) ^{.5} + r/H]/(2πH	²) [Tmp. Correc	ction]
VOLUME	Volume Out	TIME	Interval Elapsed	d Time	Flow Rate Q			_Β Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		15:04:00						Г		
2180	1,020		0:10:00	10.00	102.00	8.0	8.02E-04	69.3	1.14	2.:
1100	1,080	15:24	0:10:00	10.00	108.00	8.5	8.49E-04	73.4	1.20	2.
3200)	15:25:00								
2630			0:05:00	5.00	114.00	9.0	8.97E-04	77.5	1.27	2.
2050	580		0:05:00	5.00	116.00	9.1	9.12E-04	78.8	1.29	2
1470	580	15:40:00	0:05:00	5.00	116.00	9.1	9.12E-04	78.8	1.29	2.
910	560	15:45:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
350	560	15:50:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
3,250)	15:53:00								
2,680				5.00	114.00	9.0	8.97E-04	77.5	1.27	2.
2,120				5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
1,560	560	16:08:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
1,000	560	16:13:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2
440	560	16:18:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
2,660)	16:25:00								
2,100		16:30:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2
1,540				5.00	112.00		8.81E-04		1.25	2.
980	560	16:40:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
420	560	16:45:00	0:05:00	5.00	112.00	8.8	8.81E-04	76.1	1.25	2.
Natural Moisture:		Consistency:			Enter Ksat Value:			76 cm/day		
JSDA Txt./USCS Class:		Water Table Depth:						nined by averaging a	, 0	
Struct./% Pass. #200.: Glover, R. E. 1953. Flow from		Init. Saturation Time.:	ss. #200.: for the final three or four stabilized values and analyzing the Flow Rate Q					ate Q vs Total		

Application Package Page 65 of 74

								plication Pac	huge i uge	<u>, 00 01 1</u> -
Constar	nt-Head Borel	nole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name: G	loverRE_Temp	late
Project Name:	Innisfree		Boring No:	Ksat 12		Те	erminology and	Solution (R. E. C	lover Solutior	ו) [*]
Project No			Investigators:	ECP		Ksat _B : (Coeffic	ient of Permea	bility) @ Base Tm	р. Т _в (°С)	22
Project Location:	Crozet, VA		Date	2.22.2024		Q: Rate of flow	w of water from	n the borehole		
Boring Depth:	76.2	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	n the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	ne cylindrical bo	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. c	of water @ Tmp	o. T °C/Dyn. Visc. o	of water @ T _B	
Soil/Water Tmp. T:	8	°C	H/r ^{**} :	6.1		Ksat = Q[sinh ^{-*}	¹ (H/r) - (r ² /H ² +1	$L^{1.5} + r/H]/(2\pi H^2)$	[Basic Glover S	Solution]
Dyn. Visc. @ T:	0.001386	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sinl	h ⁻¹ (H/r) - (r ² /H ²	+1) ^{.5} + r/H]/(2πH ²) [Tmp. Correc	tion]
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q		Ksat _e	Equivalent Value	2s	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		10:05:00		<u> </u>				I		
3010	190	10:15:00	0:10:00	10.00	19.00	1.9	1.92E-04	16.6	0.27	(
2890	120	10:25	0:10:00	10.00	12.00	1.2	1.21E-04	10.5	0.17	
2770	120	10:35:00	0:10:00	10.00	12.00	1.2	1.21E-04	10.5	0.17	
2670	100	10:45:00	0:10:00	10.00	10.00	1.0	1.01E-04	8.7	0.14	
2570	100	10:55:00	0:10:00	10.00	10.00	1.0	1.01E-04	8.7	0.14	
2480	90	11:05:00	0:10:00	10.00	9.00	0.9	9.08E-05	7.8	0.13	
2430	50	11:10:00	0:05:00	5.00	10.00	1.0	1.01E-04	8.7	0.14	
2380	50	11:15:00	0:05:00	5.00	10.00	1.0	1.01E-04	8.7	0.14	
2340	40	11:20:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,300	40	11:25:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,260	40	11:30:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,220	40	11:35:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,180	40	11:40:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,140	40	11:45:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,100	40	11:50:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,060	40	11:55:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
2,020	40	12:00:00	0:05:00	5.00	8.00	0.8	8.07E-05	7.0	0.11	
1,920	100			15.00	6.67		6.72E-05	5.8	0.10	
1,870			0:05:00	5.00	10.00	1.0	1.01E-04	8.7	0.14	
1,840	30				6.00		6.05E-05	5.2	0.09	
1,810	30			5.00	6.00		6.05E-05	5.2	0.09	
1,770					8.00		8.07E-05	7.0	0.11	
Natural Moisture:		Consistency:			Enter Ksat Value:			5 cm/day		
JSDA Txt./USCS Class:		, Water Table Depth:				Notes: Test Ksat	t Value is determ	ined by averaging a	, 0	
		Init. Saturation Time.:				for the final thre	ee or four stabiliz	ed values and analy	zing the Flow Ra	ite Q vs Tota

Application Package Page 66 of 74

Consta	nt-Head Borel	hole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name:	GloverRE_Tem	olate		
Project Name:	Innisfree		Boring No	Ksat 13				d Solution (R. E.		n) [*]		
Project No:			Investigators:	ECP		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tr	np. T _B (°C)	22		
Project Location:	Crozet, VA		Date	2.22.2024		Q: Rate of flo	w of water fror	n the borehole				
Boring Depth:	81.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant height of water in the borehole						
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole				
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	p. T °C/Dyn. Visc.	of water @ T_B			
Soil/Water Tmp. T:	8	°C	H/r ^{**} :	6.1		Ksat = Q[sinh ⁻	¹ (H/r) - (r ² /H ² +	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]		
Dyn. Visc. @ T:	0.001386	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sin	h ⁻¹ (H/r) - (r ² /H ²	² +1) ^{.5} + r/H]/(2πH	²) [Tmp. Corre	ction]		
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			_B Equivalent Valu				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)		
3200		10:12:00						[]				
2550	-			10.00	65.00	6.6	6.55E-04	56.6	0.93	1.8		
1940	610	10:32	0:10:00	10.00	61.00	6.2	6.2 6.15E-04 53.1 0.87 5.4 5.45E-04 47.0 0.77 5.2 5.24E-04 45.3 0.74					
1400) 540	10:42:00	0:10:00	10.00	54.00	5.4	5.2 5.24E-04 45.3 0.74					
880	520	10:52:00	0:10:00	10.00	52.00	5.2	5.24E-04	45.3	0.74	1		
380	500	11:02:00	0:10:00	10.00	50.00	5.0	5.04E-04	43.6	0.71	1.		
2930)	11:07:00										
2690	240	11:12:00	0:05:00	5.00	48.00	4.8	4.84E-04	41.8	0.69	1.3		
2440	250	11:17:00	0:05:00	5.00	50.00	5.0	5.04E-04	43.6	0.71	1.4		
2,190	250	11:22:00	0:05:00	5.00	50.00	5.0	5.04E-04	43.6	0.71	1.4		
1,950	240	11:27:00	0:05:00	5.00	48.00	4.8	4.84E-04	41.8	0.69	1.		
1,710	240	11:32:00	0:05:00	5.00	48.00	4.8	4.84E-04	41.8	0.69	1.		
1,470	240	11:37:00	0:05:00	5.00	48.00	4.8	4.84E-04	41.8	0.69	1.		
1,230	240	11:42:00	0:05:00	5.00	48.00	4.8	4.84E-04	41.8	0.69	1.3		
Natural Moisture:		Consistency:			Enter Ksat Value:			40 cm/day				
USDA Txt./USCS Class:		Water Table Depth:						nined by averaging a				
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thr		zed values and anal	yzing the Flow R	ate Q vs Total		

Application Package Page 67 of 74

Constai	nt-Head Borel	hole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name: G	GloverRE_Temp	olate		
Project Name:	Innisfree		Boring No	Ksat 14		Te	erminology and	d Solution (R. E.	Glover Solutio	n) [*]		
Project No			Investigators:	ECP		Ksat _B : (Coeffic	ient of Permea	ibility) @ Base Tn	пр. Т _в (°С)	22		
Project Location:	Crozet, VA		Date	2.22.2024		Q: Rate of flow	w of water from	n the borehole				
Boring Depth:	55.9	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant height of water in the borehole						
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of th	ne cylindrical b	orehole				
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T_B			
Soil/Water Tmp. T:		°C	H/r ^{**}	6.1		Ksat = Q[sinh ⁻⁷	¹ (H/r) - (r ² /H ² +2	$1)^{.5} + r/H]/(2\pi H^2)$	[Basic Glover	Solution]		
Dyn. Visc. @ T:	0.001386	-	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sin		+1) ^{.5} + r/H]/(2πH		ction]		
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			B Equivalent Valu				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)		
3200		11:53:00										
3010				11.00	17.27		1.74E-04	15.0	0.25	0.		
2860				9.00	16.67	1.7	1.68E-04	14.5	0.24	0.		
2720				10.00	14.00		1.41E-04	12.2	0.20	0.		
2570				10.00	15.00		1.51E-04	13.1	0.21	0.		
2440				10.00	13.00		1.31E-04	11.3	0.19	0.		
2310				10.00	13.00	1.3	1.31E-04	11.3	0.19	0.		
2240				5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
2170	70			5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
2100	70			5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
2,030	70	13:13:00	0:05:00	5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
1,960	70	13:18:00	0:05:00	5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
1,890	70	13:23:00	0:05:00	5.00	14.00	1.4	1.41E-04	12.2	0.20	0.		
Natural Moisture:		Consistency:			Enter Ksat Value:			12 cm/day				
USDA Txt./USCS Class:		, Water Table Depth:				Notes: Test Ksat	t Value is determ	ined by averaging a	, 0			
Struct./% Pass. #200.:		Init. Saturation Time.: above groundwater level. pp.				Elansed Time G	ranh	ed values and anal	, 0	-		

Application Package Page 68 of 74

-		• -						plication Pac	<u>chage Page</u>	3 00 01 74
Constai	nt-Head Borel	hole Permeameter	Test	An	alytical Method:	Glover Solu	tion	File Name: 🤆	loverRE_Tem	plate
Project Name:	Innisfree		Boring No:	Ksat 15		Т	erminology and	d Solution (R. E.	Glover Solutio	n) [*]
Project No			Investigators:	ECP		Ksat _B : (Coeffic	cient of Permea	bility) @ Base Tn	пр. Т _в (°С)	22
Project Location:	Crozet, VA		Date:	2.22.2024		Q: Rate of flo	w of water fron	n the borehole		
Boring Depth:	81.3	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. of water @ Tmp. T °C/Dyn. Visc. of water				
Soil/Water Tmp. T:	8	°C	H/r ^{**} :	6.1		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +:	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001386	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s			+1) ^{.5} + r/H]/(2πH		
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			3 Equivalent Valu	es	
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
2700		14:55:00		[
2000				5.00	140.00	14.1	1.41E-03	122.0	2.00	4.0
1330	670	15:05	0:05:00	5.00	134.00	13.5	1.35E-03	116.7	1.92	3.8
680	650	15:10:00	0:05:00	5.00	130.00	13.1	1.31E-03	113.3	1.86	3.
10	670	15:15:00	0:05:00	5.00	134.00	13.5	1.35E-03	116.7	1.92	3.
2900		15:20:00								
2100	800	15:25:00	0:05:00	5.00	160.00	16.1	1.61E-03	139.4	2.29	4.
1300	800	15:30:00	0:05:00	5.00	160.00	16.1	1.61E-03	139.4	2.29	4.
500	800	15:35:00	0:05:00	5.00	160.00	16.1	1.61E-03	139.4	2.29	4.
2,770		15:40:00								
1,970	800	15:45:00	0:05:00	5.00	160.00	16.1	1.61E-03	139.4	2.29	4.
1,170	800	15:50:00	0:05:00	5.00	160.00	16.1	1.61E-03	139.4	2.29	4.
360	810	15:55:00	0:05:00	5.00	162.00	16.3	1.63E-03	141.1	2.32	4.
3,200		16:00:00								
2,460	740	16:05:00	0:05:00	5.00	148.00	14.9	1.49E-03	128.9	2.12	4.:
1,650	810	16:10:00	0:05:00	5.00	162.00	16.3	1.63E-03	141.1	2.32	4.
850							1.61E-03	139.4	2.29	4.
Natural Moisture:	1	Consistency:	1		Enter Ksat Value:			110 cm/day		
USDA Txt./USCS Class:		Water Table Depth:				Notes: Test Ksa		ined by averaging a		
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thr		ed values and anal	yzing the Flow R	ate Q vs Total
Glover, R. E. 1953. Flow from	a test-hole located a		69-7l. in: Theory and Pro	oblems of Wate	r Percolation. (C. N. Zan			this solution exists	when the dista	nce from the

Application Package Page 69 of 74

					1 1	<u></u>		plication Pa				
Consta		Ana	alytical Method:	Glover Solution File Name: GloverRE_Template								
Project Name:	Innisfree		Boring No: Ksat 17			Terminology and Solution (R. E. Glover Solution)*						
Project No			Investigators:	APS		Ksat _B : (Coeffi	cient of Permea	bility) @ Base Tn	np. T _B (°C)	22		
Project Location:	Crozet, VA		Date	4-18-24		Q: Rate of flo	w of water from	n the borehole				
Boring Depth:	71.12	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	n the borehole				
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical bo	orehole				
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc.	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T_B			
Soil/Water Tmp. T:	15	°C	H/r ^{**} :	6.1		Ksat = Q[sinh	⁻¹ (H/r) - (r ² /H ² +1	L) ^{.5} + r/H]/(2πH ²)	[Basic Glover S	Solution]		
Dyn. Visc. @ T:	0.001139	kg/m·s	Dyn. Visc. @ T _B .:	0.000955 I	kg/m·s	Ksat _B = QV[sin		+1) ^{.5} + r/H]/(2πH		tion]		
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			Equivalent Valu				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)		
3200		10:20:00				[]						
3010				5.00	38.00		3.15E-04	27.2	0.45	0.3		
2830				5.00	36.00	3.0	2.98E-04	25.8	0.42	0.3		
2650		10:35:00	0:05:00	5.00	36.00	3.0	2.98E-04	25.8	0.42	0.		
2450	200	10:40:00	0:05:00	5.00	40.00	3.3	3.31E-04	28.6	0.47	0.		
2250				5.00	40.00	3.3	3.31E-04	28.6	0.47	0.		
2050	200	10:50:00	0:05:00	5.00	40.00	3.3	3.31E-04	28.6	0.47	0.		
1850	200	10:55:00	0:05:00	5.00	40.00	3.3	3.31E-04	28.6	0.47	0.9		
1610	240	11:00:00	0:05:00	5.00	48.00	4.0	3.98E-04	34.4	0.56	1.		
1380	230	11:05:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
1,150	230	11:10:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
920	230	11:15:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
690	230	11:20:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
460	230	11:25:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
230	230	11:30:00	0:05:00	5.00	46.00	3.8	3.81E-04	32.9	0.54	1.		
Natural Moisture:		Consistency:			Enter Ksat Value:			32.9 cm/day				
USDA Txt./USCS Class:		Water Table Depth:						ined by averaging a				
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thr		ed values and anal	yzing the Flow Ra	ate Q vs Total		

Application Package Page 70 of 74

Consta	Test	An	alytical Method:	Glover Solution File Name: GloverRE_Template						
Project Name:	Innisfree		Boring No:	Terminology and Solution (R. E. Glover Solution)*						
Project No:			Investigators:	ECP		Ksat _B : (Coeffic	cient of Permea	ibility) @ Base Tr	np. T _B (°C)	22
Project Location:		Date:	4-18-24		Q: Rate of flow	w of water fron	n the borehole			
Boring Depth:	76.2	2 (m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water i	in the borehole		
Boring Diameter:	8.3	3 cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of the	he cylindrical bo	orehole		
Boring Radius r:	4.13	3 cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. c	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ $\rm T_{\rm B}$	
Soil/Water Tmp. T:	12	2 °C	H/r ^{**} :	6.1		Ksat = Q[sinh ⁻	¹ (H/r) - (r ² /H ² +2	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001236	5 kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s			+1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			Bequivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		10:22:00								
2960					48.00		4.32E-04	37.3	0.61	1.
2760				5.00	40.00	3.6	3.60E-04	31.1	0.51	1.
2560				5.00	40.00	3.6	3.60E-04	31.1	0.51	1.
2320	240	10:42:00	0:05:00	5.00	48.00	4.3	4.32E-04	37.3	0.61	1.
1860				10.00	46.00	4.1	4.14E-04	35.7	0.59	1.
1370) 490	11:02:00	0:10:00	10.00	49.00	4.4	4.41E-04	38.1	0.62	1.
880) 490	11:12:00	0:10:00	10.00	49.00	4.4	4.41E-04	38.1	0.62	1.
390) 490	11:22:00	0:10:00	10.00	49.00	4.4	4.41E-04	38.1	0.62	1.
Natural Moisture:		Consistency:			Enter Ksat Value:			38.1 cm/day		
USDA Txt./USCS Class:		Water Table Depth:				Notes: Test Ksa		ined by averaging a	and/or rounding	the test resul
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thre	ee or four stabiliz	ed values and anal	yzing the Flow Ra	ate Q vs Total

Application Package Page 71 of 74

Constai	Test	An	alytical Method:	·········						
Project Name:	Innisfree		Boring No	Terminology and Solution (R. E. Glover Solution)*						
Project No			Investigators:	APS		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tr	пр. Т _в (°С)	22
Project Location:	Crozet, VA		Date:	4-18-24		Q: Rate of flow	w of water from	n the borehole		
Boring Depth:	60.96	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T_B	
Soil/Water Tmp. T:	16	°C	H/r ^{**}	6.1		Ksat = Q[sinh ⁻	¹ (H/r) - (r ² /H ² +:	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001109	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m∙s	Ksat _B = QV[sin		+1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			Bequivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3230		12:32:00								
3160				5.00	14.00		1.13E-04	9.8	0.16	0.
3090				5.00	14.00	1.1	1.13E-04	9.8	0.16	0.
3030				5.00	12.00	1.0	9.68E-05	8.4	0.14	0.
2960	70	12:52:00	0:05:00	5.00	14.00	1.1	1.13E-04	9.8	0.16	0.
2880	80			5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2800	80	13:02:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0
2720	80	13:07:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2640	80	13:12:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2560	80	13:17:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2,480	80	13:22:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2,400	80	13:27:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0.
2,320	80	13:32:00	0:05:00	5.00	16.00	1.3	1.29E-04	11.2	0.18	0
Natural Moisture: USDA Txt./USCS Class:		Consistency Water Table Depth:			Enter Ksat Value:	Notes: Test Ksa	t Value is determ	11.2 cm/day ined by averaging a	and/or rounding	the test resu
Struct./% Pass. #200.:		Init. Saturation Time.:						ed values and anal	yzing the Flow R	ate Q vs Tota
Glover, R. E. 1953. Flow from	a test-hole located a		69-71 in: Theory and Pro	bloms of Wata	r Porcolation (C N 7an	Elansed Time G		this colution ovist	when the distant	aco from tho

Application Package Page 72 of 74

Consta		An	alytical Method:							
Project Name:	Innisfree		Boring No:	Terminology and Solution (R. E. Glover Solution) [*]						
Project No			Investigators:	ECP 4-18-24				ibility) @ Base Tn	пр. Т _в (°С)	22
Project Location:	Project Location: Crozet, VA					-	w of water fron			
Boring Depth:	60.96	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm			in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm		ne cylindrical bo			
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water $@T_B$	
Soil/Water Tmp. T:	12	°C	H/r ^{**}	6.1		Ksat = Q[sinh ⁻¹	¹ (H/r) - (r ² /H ² +2	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001236	<u>.</u>	Dyn. Visc. @ T _B .:	0.000955	kg/m∙s			+1) ^{.5} + r/H]/(2πH		
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			3 Equivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		12:32:00								
3040					32.00		2.88E-04	24.9	0.41	0.
2920				5.00	24.00		2.16E-04	18.6	0.31	0.
2800				5.00	24.00	2.2	2.16E-04	18.6	0.31	0.
2690	110			5.00	22.00	2.0	1.98E-04	17.1	0.28	0.
2420					27.00		2.43E-04	21.0	0.34	0.
2140				10.00	28.00	2.5	2.52E-04	21.8	0.36	0.
1860	280			10.00	28.00	2.5	2.52E-04	21.8	0.36	0.
1580	280	13:32:00	0:10:00	10.00	28.00	2.5	2.52E-04	21.8	0.36	0.
		-								
Natural Moisture:		Consistency:			Enter Ksat Value:			21.8 cm/day		
USDA Txt./USCS Class:		Water Table Depth:						ined by averaging a ed values and anal		
Struct./% Pass. #200.:		Init. Saturation Time.:				Flansed Time G		eu values allu anal	yzing the Flow Ra	

Application Package Page 73 of 74

Constar	Test	Ana	alytical Method:	Glover Solution File Name: GloverRE_Template						
Project Name:	Innisfree		Boring No:	Terminology and Solution (R. E. Glover Solution)*						
Project No			Investigators:	ECP		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tn	пр. Т _в (°С)	22
Project Location:	Location: Crozet, VA			4-18-24		Q: Rate of flow	w of water fror	n the borehole		
Boring Depth:	76.2	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole		
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole		
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tm	p. T °C/Dyn. Visc.	of water @ T _B	
Soil/Water Tmp. T:	13	°C	H/r ^{**} :	6.1		Ksat = Q[sinh ⁻	¹ (H/r) - (r ² /H ² +	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]
Dyn. Visc. @ T:	0.001202	_ kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s			² +1) ^{.5} + r/H]/(2πH		ction]
VOLUME	Volume Out	TIME	Interval Elapse		Flow Rate Q			B Equivalent Valu		
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)
3200		14:27:00		1 1						
2520				5.00	136.00		1.19E-03	102.8	1.69	3.3
1800				5.00	144.00	12.6	1.26E-03	108.8	1.78	3.5
1100	700			5.00	140.00	12.2	1.22E-03	105.8	1.74	3.4
380	720	14:47:00	0:05:00	5.00	144.00	12.6	1.26E-03	108.8	1.78	3.
3200		14:52:00								
2440				5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
1680	760	15:02:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
920	760	15:07:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
160	760	15:12:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.
3,200		15:17:00								
2,440	760	15:22:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
1,680	760	15:27:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
160	1,520	15:37:00	0:10:00	10.00	152.00	13.3	1.33E-03	114.8	1.88	3.
3,200		15:42:00								
2,440	760	15:47:00	0:05:00	5.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
920	1,520	15:57:00	0:10:00	10.00	152.00	13.3	1.33E-03	114.8	1.88	3.7
Natural Moisture:		Consistency:			Enter Ksat Value:			114.8 cm/day		
USDA Txt./USCS Class:		Water Table Depth:						nined by averaging a	-	
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final three Flansed Time G		zed values and anal	yzing the Flow R	ate Q vs Total
Glover, R. E. 1953. Flow from pottom of the borehole to the		0 11	,			0 ,		r this solution exists evised 1/14/2014	when the dista	nce from the

Application Package Page 74 of 74

			7 (1				A	oplication Pa	chaye Fay	<u> </u>		
Constai	Test	Analytical Method: Glover So			Ition File Name: GloverRE_Template							
Project Name:	Innisfree		Boring No Ksat 23			Terminology and Solution (R. E. Glover Solution)*						
Project No			Investigators:	APS		Ksat _B : (Coeffic	cient of Permea	ability) @ Base Tr	np. T _B (°C)	22		
Project Location:	Crozet, VA		Date:	4-18-24		Q: Rate of flo	w of water fror	n the borehole				
Boring Depth:	76.2	(m, cm, ft, in)	WCU Base Ht. h:	15.0	cm	H: Constant h	eight of water	in the borehole				
Boring Diameter:	8.3	cm	WCU Susp. Ht. S:	10.2	cm	r: Radius of t	he cylindrical b	orehole				
Boring Radius r:	4.13	cm	Const. Wtr. Ht. H:	25.2	cm	V: Dyn. Visc. o	of water @ Tmp	o. T °C/Dyn. Visc.	of water @ T_B			
Soil/Water Tmp. T:	17	°C	H/r ^{**}	6.1		Ksat = Q[sinh	¹ (H/r) - (r ² /H ² +	1) ^{.5} + r/H]/(2πH ²)	[Basic Glover	Solution]		
Dyn. Visc. @ T:	0.001081	kg/m·s	Dyn. Visc. @ T _B .:	0.000955	kg/m·s	Ksat _B = QV[sin				[Tmp. Correction]		
VOLUME	Volume Out	TIME	Interval Elapse	d Time	Flow Rate Q			B Equivalent Valu				
(ml)	(ml)	(h:mm:ss A/P)	(hr:min:sec)	(min)	(ml/min)	(µm/sec)	(cm/sec)	(cm/day)	(in/hr)	(ft/day)		
3250		13:51:00				r						
3160			0:05:00	5.00	18.00	1.4	1.42E-04	12.2	0.20	0.		
3020	140	14:01	0:05:00	5.00	28.00	2.2	2.20E-04	19.0	0.31	0.		
2870	150			5.00	30.00	2.4	2.36E-04	20.4	0.33	0.		
2730	140	14:11:00	0:05:00	5.00	28.00	2.2	2.20E-04	19.0	0.31	0.		
2600				5.00	26.00	2.0	2.04E-04	17.7	0.29	0.		
2400	200			5.00	40.00	3.1	3.15E-04	27.2	0.45	0.		
2210		14:26:00	0:05:00	5.00	38.00	3.0	2.99E-04	25.8	0.42	0.		
2040	170	14:31:00	0:05:00	5.00	34.00	2.7	2.67E-04	23.1	0.38	0.		
1840	200	14:36:00	0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0.		
1,640	200	14:41:00	0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0.		
1,440	200	14:46:00	0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0.		
1,240	200	14:51:00	0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0		
1,040	200	14:56:00	0:05:00	5.00	40.00	3.1	3.15E-04	27.2	0.45	0.		
Natural Moisture:		Consistency:			Enter Ksat Value:			27.2 cm/day				
USDA Txt./USCS Class:		Water Table Depth:				Notes: Test Ksa		ined by averaging a	and/or rounding	the test resul		
Struct./% Pass. #200.:		Init. Saturation Time.:				for the final thr	ee or four stabili	zed values and anal				
Glover, R. E. 1953. Flow from	a test-hole located a		60.71 in Theory and Dre	blome of Mata	- Develotion (C. N. Zen	Elansed Time G			have the all the	and from the		